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ABSTRACT

The description of thermo-physical properties afepcomponents and mixtures, especially the eqiilibbetween
two or more phases is of great importance for tbsigh and simulation of chemical processes and nodmsgr
applications.

The Volume Translated Peng-Robinson (VTPR) modeligdes an accurate means by which to calculateethes
properties for pure and mixed subcritical, as wal supercritical components, with reliable estiori for
symmetric and asymmetric systems. However, VTPRireg group interaction parameters and currentymhPR
group interaction parameter matrix is small, asesegjon of these parameters using experimentalrdgtares great
care in order to obey all known boundary conditidnscontrast though, the modified UNIFAC groupeirgction
parameter matrix, which has been continuously elddnand improved since 1983, contains consideratuye
information and would be of great use in the VTPRthnd. The modified UNIFAC parameters however are
unavailable for use in the VTPR method due to tteinperature dependence, which leads to incoreegpérature

extrapolations when used together with the VTPRimgixule.

The new group contribution equation of state VGTiRfRoduces an excess Gibbs energy translation ifumétto
the mixing rule, which allows the combination oktkolume translated Peng-Robinson EOS with the fiealdi
UNIFAC group contribution method, and allows thee usf the large amount of information associatedhwit
modified UNIFAC. In the VGTPR method, the equalitygF is obtained by iterative adjustment of the mixtare
parameter of the EOS and is guaranteed at any tampe. A fixed reduced density of the pure compdsmiand the
mixture is used for extension to supercritical giods. The pressure difference between this statethe saturated
state changestgnly slightly due to the low pressure dependerfcg®dn the liquid state. This model therefore
allows the combination of the volume translated g?Robinson EOS with the modified UNIFAC method {wit

temperature dependent group interaction parameters)

The VGTPR method is fairly new and until now littlas been done in terms of testing the model thgrigu The
work performed will provide a re-derivation of tig€ translated mixing rule in an attempt to simplifetcurrent
algorithm and perform comprehensive tests on th& RIS method, evaluating its performance utilizing thrge
amount of experimental data stored in the DortmiDath Bank (DDB).

This report covers a comprehensive review of a ramuf existing § mixing rules, looking at the theoretical
concepts related to their derivations along with sldvantages and disadvantages associated withaeddiollows
the development of the field over the last 30 ye@he idea behind the VGTPR model is introduced disdussed

before laying out a work plan for future researetuired.
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NOMENCLATURE
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a - Equation of state attraction parameter
or Helmholtz energy
b - Equation of state co-volume
B - Second virial coefficient
c - Equation of state volume translation term
C - Third virial coefficient
D - Fourth virial coefficient
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F - Surface area to mole fraction ratio used in UNIF
g - Molar Gibbs free energy
G - Expression used in method of Twtal.(1991) — defined by Equation (2.14)
h - Function used in derivation by Michelsen (199@efined by Equation (2.34)
or molar enthalpy
H - Expression used in method of Twtal.(1991) — defined by Equation (2.13)
k - Binary-interaction parameter
I - Binary-interaction parameter
m - Binary-interaction parameter
n - Number of moles
nc - Total number of components
P - Pressure



Greek Symbols

Subscripts

Function used in derivation by Michelsen (199@efined by Equation (2.33)
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Temperature
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Compressibility factor

Shortcut notation foa/bRT

Binary-interaction parameter
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Relative distribution constant for use in theMM mixing rule

Equation of state specific constant usedfimixing rules
or constant of approximating function used in defewabf MHV1 and MHV2 mixing rules

Constant of approximating function used in dation of MHV1 and MHV2 mixing rules

Constant of approximating function used in datitn of MHV2 mixing rule

Infinite pressure reference
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calc -
comb -
EOS -

exp -

MHV -
res -

trans -

Superscripts

E -

Property calculated from an activity coefficigfitmodel

Critical property

Result from a calculation
Combinatorial part

Property calculated from an equation of state
Result from experimental work
Component reference letter
Component reference letter
Component reference letter
Component reference letter
Component reference letter
Property of the mixture (as a whole)
Calculated by MHV1 mixing rule
Residual part

Translation term

Calculated by method of Vidal (1978)

Excess property

Property of a particular component in a mixture
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1. INTRODUCTION

The description of thermo-physical properties ofgpagomponents and mixtures, especially the
equilibrium between two or more phases is of gnagortance for the design and simulation of
chemical processes and many other applicationstoktially, two different approaches have
been used to estimate pure component propertiesphase equilibria: the equation of state
(EOS) approach and the excess Gibbs enefgynfgdel approach. Cubic equations of state are
the most popular and widely used type of EOS irusty due to their relative simplicity and
accuracy in predicting pure component and mixtbegrhodynamic properties. A great number
of gF models exist, however recent developments have theeintroduction of fully predictive
group-contribution models such as ASOG, UNIFAC anddified UNIFAC which do not
require binary-interaction parameters found fromaby experimental data and are therefore very
attractive to engineers involved in process deaigh simulation. Obviously both the equation of
state method and the activity coefficient methodehadvantages over the other and outperform
the other in specific areas® gnodels are simple and robust while equations afesallow
calculations for supercritical systems. A desirdin the two methods and make use of the
advantages of both, has driven over 30 years @nsite research aimed particularly at utilizing

the ¢ model to describe mixture parameters of cubic gons of state.

The main advantage of cubic equations of stateois im their ability to represent pure
components but rather their value when represefitind)mixtures.Sengers et al. (2000) believe
that representation of properties of fluid mixtureshe main, if not the only, purpose of cubic
and generalized van der Waals equations of statettaat when a pure fluid component is of
interest, equations of this type are not the pretemethod for representation. In any case, it is
widely regarded that there is little room for impement in the use of cubic equations of state
for pure components as this field has had a vasuatrof time and effort invested into it by past
researchers. A number of methods have been devkfop@redictions of various types of pure
components and therefore cubic equations of statebm used for many polar and non-polar or
associating compounds. This has created an opthetnvery little progress can be made with
regards to pure component representation by equsatibstate; however this is by no means the

case when it comes to EOS use in multicomponeiteisys



In order to extend the pure component EOS modetfsixtures one can use the van der Waals
one-fluid mixing rule. The one-fluid theory of mixes is based on the assumption that the EOS
for a mixture is the same as that for a hypothktare” fluid that has EOS parameters which
depend on the composition of the mixture. The i@lahip used to establish mixture parameters
must describe the concentration dependence ofdhmmameters and is commonly known as a
mixing rule. Finding the CEOS mixture parametersfistmost importance when representing a
fluid mixture in order to calculate accurate resulthis importance is highlighted by Sengets

al. (2000) which concludes that the establishmentefrixture parameters is more important

than the actual PVT relationship embodied withpadicular EOS.

A number of different mixing rules have been depelh each one aiming at improving
predictions of fluid mixtures using cubic equatiooisstate. Generally each new mixing rule
improves on previous rules in certain areas, howthey fail in others. Some mixing rules have
also been developed to improve predictions of $jgetgipes of mixtures but still fail when used
to represent other types. Most importantly thoughh regards to the work presented in this
report, a number of mixing rules have been pubtisiwaich use a gmodel to describe the
composition dependence of the EOS parameters;fainergroviding the desired link of the two
methods mentioned aboveélhe d takes into account liquid phase non-ideality af #ystem
under investigation and introduces it into the E@®del. This results in more reliable
representation of systems containing polar or aa8ong compounds when using equations of
state. Furthermore, it has been shown that shueldictive § models be used, fully predictive

EOS models may be developed.



2. MIXING RULES - A REVIEW

At present one universal mixing rule is not avdgabnd research is continuing in order to
establish a flexible and uncomplicated rule thatid@redict properties of most multicomponent
systems with a reasonable level of accuracy. ThHewmg section investigates a number of
methods for extending cubic equations of state itdures through the calculation of mixtuag

b andc (in the case of volume-translated equations deyteoefficients. The review will start
with the earliest and most simple mixing rule (theadratic mixing rule) before investigating
some empirical modifications that were introducedmprove flexibility of the mixing rules.
The final section provides a comprehensive revidwhe ¢ mixing rules which use the®g

models to define the composition dependence ofnitieure parameters.

Due to the fact that the cubic Peng-Robinson EOSsed in the current method, only rules
describing mixtures in association with cubic egpreg of state will be discussed below. Mixing

rules used in other types of equations of stat@mareeviewed here.

2.1 Quadratic Mixing Rules

The classical quadratic mixing rule is by far thestnpopular due mainly to its simplicity and the
relatively high level of accuracy achieved for mipds containing nonpolar or only slightly polar
compoundsThe origin of this mixing rule lies in basic stéital thermodynamics which is used

to describe the composition dependence of thelwagefficients. The composition dependence

of the virial coefficients for a mixture containing components is given by:

nc nc

Bm:;;44§

nc nc nc

Ca=2.2.2.27%G 21

i=1 j=1k=1

nc nc nc nc

D,=>22>22%%¢k

i=1 j=lk=11=1
etc

wherez is the mole fraction of componehaindB;, Cix, Dii etc. are sets of virial coefficients

dependent solely on temperature. Obviol&ly Gy, Dsr etc. are just the pure component virial



coefficients off, while the remaining coefficients are known asiattion virial coefficients.

The subscripin indicates a mixture property.

The van der Waals equation of state for a fluidtorex can be expanded into a power series
around zero density to give an expression clossdgmbling the virial equation:

\Y

e T

whereZ is the compressibility factog andb are the substance specific equation of state gnerg

[ b i aTn
Z=1+)| | -
;( j RTv
(2.2)

(attraction) and co-volume parameters, the subtsamijindicates a mixture propertR is the
universal gas constarii,is the temperature ands the molar volume. Comparison of the density
virial equation and Equation (2.2) reveals thedwihg relations between the virial coefficients

and the EOS parameters:
C. .= (2.3)

From Equation (2.1) one can see that the secomal goefficientB,, has a quadratic dependence
on composition. The EOS coefficierds and b, are linked toB,,, by Equation (2.3) and so in
order to maintain consistency, the composition ddpace ofa;, and b, may be at most a
guadratic function. Conversely, the third virialeficient has a cubic composition dependence
which imposes the stricter constraint that the F@&metebr, should be only a linear function
of composition. Similar results may be found whensidering other equations of state; however
the simplest function faa, (from the van der Waals equation) is given by:

a,=2.2.%2%3 (2.4)
i=1 j=1
here z may be the mole fraction of pure componém the vapour or liquid phase as cubic

equations of state are capable or representing fiitdsesa; anda; are the pure componeat

4



parameters calculated using critical properties #nedequation associated with the EOS being
used, whilea; (=g;) is the cross term and is relatedatoanda; by the geometric mean rule (a
combining rule) which contains one adjustable kyriateraction parametek; (=k;) and no

composition dependence:

a =(a3 )0'5 (1- k) (2.5)

Wheni=j, the binary-interaction parameter equals zero Bgdation (2.5) produces the pure

component parameter.

Theb,, parameter is represented most commonly by thadimexing rule due to its simplicity:
b, =>.2b (2.6)
i=1

The equation above is reasonable as the parammetay represents the closest packing volume
possible for a particular type of molecule in a mie and does not require a complicated
function for extension from pure components to atuore. Theb, parameter may also be

calculated by an equation similar to (2.4) and gishe combining rule:

5 =5(8+8)(-)) @)

lij (=15i) is a binary-interaction parameter that must Iedito experimental data. This added
complexity is only required for mixtures containiogmponents that are highly asymmetric with

respect to size and is often not utilized.

As stated above, the quadratic mixing rule is,ni@st cases, suitable for representation of phase
equilibria in multicomponent systems which contagither non-polar or slightly polar
components, however this mixing rule begins to falerely when applied to systems that
contain strongly polar and associating compoundsaddition it will always require binary-
interaction parameters specific to the system bdivgstigated which requires experimental

results and a fitting procedure, removing the gmoksi of a fully predictive model.



2.2 Composition-Dependent Combining Rules

In order to account for the shortcomings of thedyatic mixing rule a number of empirical
modifications have been made. These modificatioms & increasing flexibility of the mixing
rule to correlate phase behavior of mixtures coitagi strongly polar or associating compounds
(non-ideal solutions), which is a trait greatlykang in the original quadratic mixing rule. These
modifications are implemented to improve the caltah of the cross termsy) and in effect
introduce some composition dependency into tharaily composition-independent combining
rule (Equation (2.5)) of the classical quadratixing rule. The mixing rule foa, (Equation
(2.4)) remains the same for most methods and owlgifications to the cross term calculation

are made.

Chao and Robinson (1986) and Stryjek and Vera (198Plemented combining rules that
require two binary-interaction parametégsandk;, as opposed to the single binary-interaction
parameter K;=k;) found in the original quadratic mixing rules. Theposed combining rules

were respectively:

a=(ag) (1-k+(k-k)2 @9

=({a a o0 ——kijlﬂi
a=(ag) [1 (M’f%hﬁ)} (2.9)

The combining rule of Chao and Robinson (1986% later extended by Schwartzentruéeal.
(1987) to include a third parameter ultimately aasing the flexibility and accuracy of the
guadratic mixing rule but at the same time incnegisis complexity. The proposed combining

rule was given as:
_ 0.5 m4-m 7
a =\gag) |1-k - %J (2.10)
,(%)( B e
Wherek”-:kji, Iji='|ij, mizl-mj' andk.-i=ln=0.

While the composition-dependent combining rulepdwvide a simple method for extension of
equations of state to mixtures containing non-polaassociating compounds, and do so with a



satisfactory level of accuracy, they have been dotincontain a serious defect. Michelson and
Kistenmacher (1990) investigated composition-depah@ombining rules and found that they
provide different results when a system is congidéo be composed of its actual components to
when it is considered to be composed of subcomperwdrthe actual components. Senggral.
(2000) explains the problem as follow:a binary mixture with composition {xx) is treated

as a ternary system with composition, ¢, x3), where the ternary mixture is formed by dividing
component 2 into two pseudocomponents with iddnpoaperties, a different value for the
parameter a will result. Therefore, the calculatptbperties will depend on the number of
pseudocomponents, which is in contrast to expetah@vidence’ Many researchers attempted
to overcome the Michelsen-Kistenmacher problem evhikintaining the obvious advantages of
the composition-dependent combining rules. Matldasl. (1991) produced an equation that
overcame this problem by adding a new compositiepeddent term to the classical quadratic
mixing rule and not just altering the combiningerals was done by previous authors associated

with the flawed composition-dependent combiningsulThe new mixing rule proposed was:

a=y 327 (2p) (- K243 4,247, ”fjs 21

i=1 j=1 i=1 j=1

li may or may not equadl; depending on the level of accuracy and complerityired.

Twu et al. (1991) also proposed a revised mixing rule thaercame the Michelsen-
Kistenmacher problem and contained an extra tertihabof the classical quadratic one:

e . [g{(H”G‘j )1/3(5}, 3 )1/6 ,

a:- . ;%(@@)ﬂz(l_ iF)J’Zi" — (2.12)
=1 j=1 i=1 JZ:;‘G” Z

where:

(2.13)

G = exp(—ﬁlj H; ) (2.14)



This mixing rule can either be used as a 2-paranmetelel by fitting bothk; andk; to binary
experimental data or it can be used as a more aecdrparameter model wherefyandp; are

also fitted.

2.3Mixing Rules Using Excess Gibbs Energy f/ Activity Coefficient Models

The classical quadratic mixing rule can at mostyd® applied to mixtures of slight solution
non-ideality. In order to improve this, alteratiottsthis rule was necessary which required a
higher level of complexity along with the fittingf dinary experimental data to find binary-
interaction parameters and led to the developmérth® composition-dependent combining
rules. In some cases as many as 4 binary-interapticameters need to be fitted to experimental

data, which is obviously not ideal.

Highly non-ideal solutions (containing non-polardamssociating compounds) have been
described using(or activity coefficient) models with great sucse$herefore much effort has
been dedicated to combining these models with epstof state in order to extend EOS
applicability to non-ideal solutions, and consedlenitilize the attractive features of both

classes of models.

The d of a solution can be calculated in two ways: vitie use of an appropriaté godel
(most common) and with the use of an EOS via furetdgal thermodynamic equations.
Therefore the EOS mixing rule composition dependédnc the liquid phase can be reflected by

a desirable gmodel if the different expressions are matchefbémws:

gf = gEEOS (2.15)
The subscripty indicates calculation by a“gmodel (activity coefficienty model) while the
subscripteOSindicates calculation by means of an EOS. If ossumes that the linear mixing
rule for by, (Equation (2.6)) applies, tha, parameter may then be found by assuming that
Equation (2.15) holds true.



A number of models exist which can be used to ciﬂileugyE such as NRTL, UNIQUAC,

UNIFAC and many moreg£,.is calculated using a specific EOS and the follgixéquation:

gEos = RT(In ¢m_z zIn ¢|j (2.16)
=

whereon andg; are the mixture and pure component fugacity coeffits respectively and are

calculated from the following equation which is sifie to pure components:

In¢:ﬂ—1—lnﬂ/+i1_j RT_plav (2.17)
RT RT RT\ v

Equation (2.17) may be used to calculateas the mixture is assumed a pure fluid with pure
component EOS parameters equagtcandby,. It is important to note that this expression may
not be used to calculate fugacity coefficients qdaaticular component in the mixture. TRe

term is represented by a pressure explicit EOSsatiterefore a function of.

The more recent advancement in the field ofrpdels, through ASOG, UNIFAC and modified
UNIFAC, has seen the development of accurate mduedsd on the group-contribution concept.
These models do not require binary experimental,daey only require group-group interaction
parameters, and as a result are fully predictif@ predictive § model is used in Equation
(2.15) to develop theFgmixing rule, a predictive group-contribution EOSGEOS) results. If a
predictive method is used to determine the comiposdependence of the EOS parameters, no
binary experimental data is required and the EG®mes fully predictive too. This is obviously
a major advantage that was not evident when thestigation into § mixing rules first began
due to the immaturity of the field of predictivé models, however at present it continues to

drive further research into more accurate methods.



Combining cubic equations of state with group-dbution g models to obtain a mixing rule
extends the applicability of cubic equations oftestto the prediction of VLE in three major

areas:

1.Polar systems at low pressure, where the GCEOSsienee matches the performance of
the g model with they-¢ approach.

2.Polar systems at high pressure, where conventionahg rules have been found to fail.

3.Systems that contain supercritical components, @hegas molecules are considered as

new groups.

The following sections will cover major developmentade in the field ofgmixing rules from
the first idea proposed by Vidal (1978) to the depment of the most recent VTPR model
(developed in early 2000).

2.3.1 Vidal

Vidal (1978) was the first to use & model to establish a mixing rule for an EOS ineortb
allow modeling of highly non-ideal systems. The RédKwong EOS was used and as a result

application of Equation (2.16) yielded the followiaxpression:

ggos:_RT{ln(WJ_i Z'n[w]}+ PM—i Z Pw...

_ B | Vot B | S5, & [ MFR
-0 In( J+;ziblln( v j

m Vm

(2.18)

where v, is the mixture molar volumeg; and b; the pure component EOS parameters of
component i and; is the pure component molar volume of componegiguation (2.18) still
contains a number of unknowns (namiely v, and allv;) that would restrict its use in finding a
useful expression faa,. In order to eliminate these terms from Equati®ri§) and arrive at an
explicit expression foa,, an infinite-pressure limit was applied. Due to thet that the mixture
EOS parameters are independent of pressure, dabdcidat different pressures should not affect
the calculated parameters assuming the parameterdated away from the system pressure (in
this case at infinite pressure) are calculatedectly. The infinite pressure limit allows one to
make the assumption that the fluid is compressei¢h an extent that the molar volume of the

10



fluid would be equal to the closest packing voluafethe molecules (i.e. the molecules are
compressed so as to be in contact with each o#imet,the only intermolecular space exists
between contacting molecules). Tihéco-volume) EOS parameter represents the closeking

volume of the molecules and therefore the followiagsumption could be made, which

effectively removes the unknown fluid molar volunfesandv;) from Equation (2.18):
v.=h, (2.19)

v =h (2.20)

It was also noted that in order for thetg be finite (i.e. not be infinite) as pressur@mmaches
infinity, the excess volumeimust be assumed to be zero.ffis not zero thenTwill approach
infinity as pressure approaches infinity. This da@ seen by investigating the following

expression (which is developed from the fundameriaberty relations):
g-=a"+PVv (2.21)
wherea® is the excess Helmholtz energy. The above dedudtiplies that the linear van der

Waals mixing rule must be used for thygparameter.

Substitution of the lineab mixing rule along with Equation (2.19) and (2.46)o0 Equation
(2.18) followed by rearrangement produces the ¥alg expression which applies only at

infinite pressure:

E
% z- 9e ] (2.22)

where gE is the § at infinite pressure and may be calculated usmgf model (assuming
Equality (2.15) holds).

In using an infinite pressure limit it was assuntkdt g is independent of pressure. The
recommended model fof galculation was NRTL and the result from using tmiodel was used

directly in Equation (2.22) even though the modatameters were fitted using data obtained

from low to moderate pressure systems. By making éissumption one could use existing

model parameters to calculate tigg term without having to refit model parameters tghhi

11



pressure data. Although it was known th&tdpes have a dependency on pressure it was
originally decided that the dependency was so sligat the tedious model parameter fitting

process could be avoided.

Obviously this assumption is incorrect and willde@ erroneous results, however the mixing

rule can be used to provide satisfactory resultshfghly non-ideal systems if the® gnodel
parameters are refitted using high pressure datha@ more correct value fat is obtained.

Having said this though, Sengeet al. (2000) points out a number of theoretical and
computational difficulties associated with the Midaixing rule. These include inaccurate
representations for non-polar hydrocarbon mixtufedure of the second virial coefficient
boundary condition at the low-density limit (quatttacomposition dependence — see Equation
(2.1)) and, as already discussed, the need togefitodel parameters to account for elevated
pressure conditions. Sengarsal. (2000) also states that thé model parameters are strongly
dependent on temperature so that, while it is goodorrelations, it has limited extrapolative or

predictive capability.

2.3.2 Huron-Vidal

The work of Vidal was later extended slightly byra and Vidal (1979), who did not alter or
extend the concepts proposed by Vidal but idewtiffeat Equation (2.22) can be generalized to
other equations of state. The general form propbgdduron and Vidal was:

_p (A, 9o
=b,| ) —z-==> (2.23)
wen (i)

where A is a numerical constant that depends on the péatiEOS that is used. Huron and
Vidal (1979) derived gmixing rule expressions f@, using the van der Waals, Soave-Redlich-
Kwong and Peng-Robinson equations of state usiagdéme procedure as Vidal (1978) (which
investigated the Redlich-Kwong EOS).
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The following expressions fax were found:

van der Waals: A=1
Redlich-Kwong: A=In2
Soave-Redlich-Kwong: A=In2
Peng-Robinson: N= L In 2+y/2
22 | 2-4/2

2.3.3 Mollerup

It soon became evident, following the work of Vidald Huron and Vidal, that th& galculated
from an EOS and from acgnodel needed to be linked at low pressure rati@n &t infinite
pressure so that the large amount of existing flosgsure) activity coefficient model parameters
could be utilized, therefore removing the need wasure data and refit model parameters at
elevated pressures. Mollerup (1986) was the firgshove the field in this direction by matching
the d from the EOS and an appropriate model at zerospres In deriving the mixing rule
Mollerup managed to avoid the assumptions made idgl\that § calculated from an EOS at
infinite pressure equals that calculated byampdel (using low pressure parameters) and that
the co-volume parametérequals the volume at infinite pressure. Mollerup still assumed that
vE is zero, however made the assumption that Equdfidtb) applies at a pressure of a few
atmospheres or less which is far more reasonahiteea§ model parameters are most commonly

established using low to moderate pressure data.

Mollerup (1986) derived the following expressionngsthe van der Waals EOS:

gEOS —_ bm am . bi = a'l
=—In|1-—|-—m 4 ' |n| 1-—|+ 7 + ...
RT n[ %j RTYy 2;2 n[ vj le RTv

(2.24)

If one then assumes that saturated liquid volumesiredependent of pressure (a reasonable
assumption by all accounts), the pressure terrhénvan der Waals EOS may be neglectd (

0) and the equation can be solvedldfrto give:
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1/2
%:%P+@—M:ﬂ } (2.25)

which may be applied to both the mixture and pummgonents. Mollerup (1986) states that at
low pressures (less than a few atmospheres) Equiia5) is accurate to within 1 percent.

The following terms were defined in the derivation:

f:ﬂ (2.26)
v

f :b—m (2.27)
Vm

(2.28)

which allowed the solution of Equation (2.24) witspect tod,/bm) to be found (also applying
the assumption thaf = 0):

el AR AL

where g¢ is of at the zero reference pressure.

J (2.29)

f (for pure components and mixtures) is only a wisiction of temperature and in the case of
mixtures is also dependent on composition, howaveterup (1986) states thdt may be
regarded as a constant for practical applicati6ofiowing this, Mollerup identified that ib/v

for the pure components and for the mixture camdsimed equal, thén= f, andf, = 1, and
found that at the normal boiling poihts in the region of 0.8 for liquids when using tren der
Waals EOS. All of this applied to Equation (2.283ults in the following explicit expression for

am.
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{Zlb ol ¢ = o[ m 50

The assumption thdit = f,, and the assumption that both are equal to somstaanfound from
experimental data was a huge step forward and éas bsed in the development of mafty g

mixing rules since.

2.3.4 Modified Huron-Vidal

Michelsen (1990) extended the idea proposed by evigll and matched thé gt a reference
pressure of zero using the Soave-Redlich-Kwong B@®8oing so the following expression was

developed which in contrast to the Huron-Vidal mgkrule is not explicit:

9 +Z;In[ ] q(am)—izt(ai) (2.31)

wherea is a shortcut notation used to combine variabidbe following way:

Tn = quZT
n (2.32)
o
bRT

g and h are functions ef, anda; respectively and are given by:

q(a/m):—]_—In(umo—l)—a’mln(urao +1] (2.33)
m,0
h(a,) :—1—In(l+()—1)—czfi In(ui'uo—-ﬂ] (2.34)
i,0
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Umo anduio are the reduced liquid phase volumes of the méxand pure components at zero

pressure respectively:

(2.35)

Equation (2.33) and Equation (2.34) display theetielence of andh on the parameteks, and
ai. Umo andup in these functions can be expressed as functibrshy first converting the

Soave-Redlich-Kwong EOS into the following gendoain:

Pb 1 a
= - (2.36)
RT u-1 uutl
At the reference pressure of zero Equation (2.8@)ces to:
1 a
(2.37)

0= -
U =1 Uy(y+1)

Solving Equation (2.37) foup and taking the smallest (liquid) root, produces thllowing

expression fotp as a function of:
1 5 1/2
Uy =2 a-1-(a”-6a+1) (2.38)

valid for o > 5.83. Equation (2.38) is used to represent bgiandu; o.

Michelsen (1990) states thdt gnodel parameters are based mainly on binary mestat or near

atmospheric pressure and under these conditioa® far removed from the limiting value, with
typical values (at the normal boiling point) rangiimom 10 to 13. As a result of this, Michelsen
(1990) investigated the behavior of the q and fkefiem within this range, and noticed that they

vary almost linearly with respect to This can be seen in Figure 1 below.
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FIGURE 1 Variation of g or h-function with respect édfor the SRK EOS also showing the linear fit in
the range 10 « < 13: (---) q or h-function,) linear fit

The idea of Michelsen (1990) was then to replaeegtlnd h-function given by Equations (2.33)

and (2.34) with linear approximations:
q(a,)=q +qa, (2.39)
h(a))=h +ha, (2.40)

By substituting these straight line approximatintoiEquation (2.31), the right-hand side of the

equation is approximated as:

al@)-Y zha)= g+ g, - h- B, @ @4

By comparing Equation (2.39) and Equation (2.33) oan see:

g, =-1-1In (um’0 —1)

(umo +1j (242)
g,=-In :

um,O
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similarly, for Equation(2.40) and Equation (2.34):

hy=-1- In(ui’O —1)
Il _ _In ui,O +1 (243)
L‘Ii,O

and following the assumption of Mollerup (1986)tth#e reduced liquid phase volume (ternfied

in the work of Mollerup) is constant and the samethe pure components as for the mixture,

V V.
u =u.=|-" =L 2.44
m,0 i,0 (bm jpzo ( b, jpzo ( )

the following conclusion may be drawn:

i.e.:

=h=W¥
b =h (2.45)
G =h=A
whereW andA are constants.
This then results in a much simpler version of Eipma(2.41):
a(@,) -2 zHa) = /\[am -2 zm} (2.46)
i=1 i=1

Equation (2.31) can therefore be rearranged iredahowing explicit form for calculation od:

wnfapd(e gy en

A is found by fitting a straight line to a plot dfet g-function (or h-function) betweenvalues of

10 and 13 and establishing the slopedepends only on the EOS used as this determimes th
type of g-function (or h-function) obtained in aehing an expression of form similar to
Equation (2.31). The g and h-function of Equati@B8) and (2.34) are specific to the Soave-
Redlich-Kwong EOS and vyields/a value of -0.593. Michelsen (1990) did a similaalysis to
that of the Soave-Redlich-Kwong EOS using the PRabinson EOS and the van der Waals
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EOS and found\ values of -0.53 and -0.85 respectively. Equat@Aq{) became known as the
Modified Huron-Vidal First-Order mixing rule (MHV1due to its similarity to the Huron-Vidal
mixing rule and the fact that a linear (first orfdapproximation is used to represent the q and h-

function.

A Modified Huron-Vidal Second-Order mixing rule (Mi2) was first proposed by Michelsen
(1990) and later implemented by Dahl and Micheld&®0), wherein a second order (quadratic)
approximation is used to represent the q and htiomcThis makes sense as these functions are
not perfectly linear (see FIGURE dbove) and may be better approximated by a quadrati

expression, therefore producing better results.quaratic approximations are:
a(@,) = &+ qa, + g, (2.48)

h(a,)=h +ha + ha’ (2.49)

Once again one finds that the constants in the pomgonent and mixture approximations are

identical:
:hO:l.IJ
%:h A\ (2.50)
=hZ=r

whereI is a constant. Use of this approximation in eiqua(2.31) does provide improved
results over the MHV1 method, however there is dduemplexity as the resultant expression is
not explicit and as stated by Michelsen (1990 ‘neatness associated with a simple explicit

mixing rule is lost

The MHV2 equation is:

/\(am—gzia“j+r( Zza”j 9 +z ;In[ J (2.51)

The universalA andI” parameters can be found by fitting a second-godgmomial to the EOS-

specific approximation function.
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The recommended values are:

Soave-Redlich-Kwong EOSA =-0.4780 I =-0.0047

Peng-Robinson EOS: A =-0.4347 T =-0.003654

Both MHV1 and MHV2 have been found not to satidig second-virial coefficient boundary
condition. Having said this though, both modelsvpte very reasonable correlations and
predictions of data obtained from experiment fategns that are highly non-ideal.

2.3.5 Wong-Sandler

Wong and Sandler (1992) proposed a new methodnto the ¢ model results with EOS
computations in order to obtain a mixing rule fbe tEOSa,, and b,, parameters. Attempts to
match § at zero pressure were abandoned and the factefttatss Helmholtz energy as
virtually independent of pressure was investigatedylting in & calculated from an EOS being
used to develop the mixing rule. There are two magivantages of using instead of § The
first is that the assumption thét = 0 is no longer required as when usifigagd the second, as

stated already, is thaf & not as strongly dependent on pressuréas g

The basis of the work done by Wong and Sandleunsnsarized by the following expression:

agos(T. P=w,z)= &(T, P-w, 2
=a“(T,P=low ) (2.52)
=g"(T, P=low 7)

The following argument is used in order to arrivie Equation (2.52): At sufficiently low
pressures thB\F term of Equation (2.21) is very small. This implighat § is equivalent to aat
low pressure. Gis essentially independent of pressure (or densityl as a resultaat low
pressure is equivalent t& at infinite pressure. Therefore theaf a system calculated at infinite
pressure using an EOS may be equated to thef ghe system calculated using & model,
which is essentially a low pressure calculatione(do the original fitting of model parameters

using low-pressure data).

The equality between thé gt low pressure and th& at infinite pressure is used to establish the
composition dependence of the mixture EOS parameiéong and Sandler had to also use the
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composition dependence of the second virial caefiicto relate the pure componemtandb
parameters to the equivalent mixture parametersatian (2.1) and (2.3) may be linked to give

an expression representing the second virial coefft composition dependence:

nc nc

b, - zz zz B (2.53)

i=1 j=1

The cross ternB;; is calculated by:

5 = - =3 (-5 - 2o st

where k;j is a binary parameter which is most commonly reggd using low-pressure
experimental data.

Calculation of & from a van der Waals type EOS at infinite presserilts in the following

expression:
Al N,
AN 725 2.55
{bm ;zbj o

where A is a constant dependent on the EOS used. FordheeSRedlich-Kwong and Peng-
Robinson EOS\ is equal to —0.693 and -0.623 respectively.

Using Equation (2.52) Wong and Sandler were abtotwert Equation (2.55) into the following
form:

g
b & _ % 2.56
&, = {Z A /\] (2.56)
Theb,, parameter is not calculated by the simple lineinyg rule in the Wong-Sandler method,
instead it was ensured that the second virial aoefft composition condition is satisfied. This
was achieved by substituting the expression dgr (Equation (2.56)) into the equation
representing the second virial coefficient compositdependence (Equation (2.53)) and

rearranging to get an explicit function foy;
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nc nc

2.2 %% 5

b = 7 |Oi:l ';1 ) (2.57)
, W / nc !
RT = (BbRT
If Q andD are defined as follows:
Q=22.238 (2:58)
i=1 j=1
1(& a 0, (T lowP, z)
D=— 4 =) 2.59
RT{Z“Z b A (2:59)
then the Wong-Sandler mixing rule may expressed as:
D
=RTQ — 2.60
=R 1 | 250
Q
b = 2.61
h 12D (2.61)

2.3.6 PSRK

Holderbaum and Gmehling (1991) developed a groupridmtion EOS that combined the SRK
EOS and the UNIFAC method. The method is known esliBtive Soave-Redlich-Kwong

(PSRK) due to its predictive abilities (as thereswep introduction of new parameters which
would require a fitting procedure, only existing IRAC group-interaction parameters and pure
component parameters are required). The PSRK nuaalebe used for predictions of VLE over
a temperature and pressure range much wider tlaampadssible with UNIFAC, and may also be

easily extended for use in supercritical systentscvis not possible with the use of argodel.

Holderbaum and Gmehling (1991) reveals that theKkP8Rdel uses the simple MHV1 mixing
rule (Equation (2.47)) differing only in the valoéA which is changed from -0.593 to -0.64663,
however not much insight is provided as to how Waisie was determined.
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The PSRK mixing rule is:

a, = bm(Zl z%- 0_63166{ g+ ng izln(%m (2.62)

The newA value though was found to provide much improvesiite at elevated pressure which

led Holderbaum and Gmehling (1991) to conclude tivat PSRK equation is especially suited
for conditions, where use ofyap-approach is difficult (i.e. when the real behavadrthe vapour
phase is unknown and not negligible) or inadequae when supercritical components are

present)

Following the innovative work of Wong and Sandlé®©92), Fischer and Gmehling (1996)
provided an alternative derivation of the PSRK madeich was based orfas opposed to the
fugacity coefficients. This derivation provides mansight into the value ok. In deriving the

PSRK equation Fischer and Gmehling (1996) makeswaim assumptions:

1. The excess volume®is zero (negligible), which is an assumption mddeng the
derivation of many gmixing rules.

2. The reduced liquid phase volumés assumed constant, i.e.:

Vin _ Vi
u =u=-"=—=y (2.63)
b b

The second assumption was validated by calculdipugd molar volumes of a large number of
pure components at normal pressure and boiling ¢eatyre and subsequently dividing this
value byb (which is calculated using pure component datag Wdues ol were found to vary
only slightly from 0.9 for highly polar componengmethanol and water) to 1.2 for non-polar
components (ethane, propane, butane etc.), witvarage value of 1.1. If one considers that at
infinite pressuras = 1, a value of 1.1 at atmospheric pressure isinmasonable due to the fact
that liquids may be compressed only slightly. Asesult ofu being estimated at atmospheric
pressure the reference pressure of the PSRK medethe region of 1 atmosphere (and not zero
as is the case in the MHV mixing rules).
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Through this alternative derivation it is seen it value ofA in Equation (2.47) is equivalent

to a function ot as follows:

N :In[Lj (2.64)
u+l

Substitution ofu = 1.1 results in the value & equal to -0.64663 which is the value prescribed
earlier by Holderbaum and Gmehling (1991). From &iqun (2.64) one can also see that the
constantu value assumption inherent in the MHV1 model regmia value of 1.235 farat zero
pressure, which is also not unreasonable as tharnaolume of the liquid phase would increase
slightly under reduced pressure conditions. SOMh®/1 model uses a zero pressure reference,
while the PSRK model assumes a reference statenaspheric pressure®gnodel parameters
are most commonly fitted using low pressure VLEad@tot zero pressure data), therefore by

using a reference pressure in the region of 1 gihrere more accurate results will be produced.

In developing the PSRK model, other than altering iixing rule fora, Holderbaum and
Gmehling (1991) also decided to replace the oaigtemperature dependence of the pure
componenta parameter d function) given by Soave (1972) with that given ldyathias and
Copeman (1983). This modification was made in otdegxtend the applicability of the PSRK
model to polar mixtures, as the original tempematgpendence given by Soave fails to provide
sufficiently accurate vapour pressure data for mpddabstances. The Mathias-Copeman
expression is found to provide much improved regmesion of pure component vapour
pressures, which obviously improves the reliabibfypredictions for polar mixtures. The only
downside of this is that the Mathias-Copeman exgmwesrequires three adjustable parameters
which must be fitted to pure component vapour pnesglata (which may not be readily
available), while the Soave expression only reguifee pure component acentric factors and
critical temperatures. As pointed out by Ahlers &@mehling (2002a), the Mathias-Copenman

function also fails at elevated temperatures.

There are a number of advantages associated vatRSfRK model such as the ability to provide
accurate predictions of VLE over a large pressarge (i.e. use UNIFAC parameters fitted at
low pressure for predictions at high temperaturd pressure) and the fact that parameters
associated with any"gnodel do not have to be altered but may be usestttli in the model.
For example, should the NRTL model be used inst&atdNIFAC, the existing interaction
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parameters may be used without modification. Hadddem and Gmehling (1991) also states that
the main advantage of equations of state in comparto § models ¢-¢ approach) is their
ability to represent phase equilibria of systenad tdontain supercritical components and because
of this the UNIFAC interaction parameter table haen extended to include gases (eg,,CO
CHa, N7 etc.) for use in the PSRK model. This extensioa bhaen continuous and had vast
amounts of research invested into it by Holderbaumeh Gmehling (1991), Fischer and Gmehling
(1996), Gmehlinget al. (1997),Horstmannet al. (2000) and Horstmanet al. (2005) to name a
few, and as a result has seen the addition of ewat 30 new groups to the original UNIFAC
groups. This extension has obviously greatly ineedathe range of applicability of the PSRK
model and this, along with the fact that it preslictliable results, has made it a very important
tool to chemical engineers. Having said this thguipere are also a number of limitations
related to the PSRK model. Fischer and Gmehlin@§)&lentifies two major shortcomings of
the method. The first is in the ability of PSRK describe water-alkane systems (a problem
inherent in the UNIFAC method) and second is thedmtion of too high bubble point pressures
in systems that contain components that differ tyaa size. Ahlers and Gmehling (2002a)
identifies 4 major problems with the PSRK model amndlioing so strengthens the argument for

the development of an improved model (see VTPRvelo

1) Predicted liquid densities deviate from experimengdues in a similar way to the basic
EOS (the SRK EOS).

2) The Mathias-Copemarm function provides unreasonable results at highestuced
temperatures.

3) Predictions of VLE for asymmetric systems are oftamatisfactory.

4) Predictions of excess enthalpies)(land infinite dilution activity coefficientsy{) are

poor.

23.7 LCVM

Boukouvalaset al. (1994) proposed an interesting model that madeofig®th the original g
mixing rule proposed by Vidal (1978) and that peed by Michelsen (199QMHV1). The a-
term produced by both models is linked via a linkeaaction, and for this reason the model of
Boukouvalaset al. (1994) is called the linear combination of VidaddaMichelsen (LCVM)
mixing rule. The LCVM model makes use of a modifae translated Peng-Robinson EOS and
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the original UNIFAC § model, however any EOS antimodel may be used in this mixing rule.
The development of this model was driven by th&ufaiof the PSRK model when predicting
VLE of mixtures that contain components that diffeeatly in size (highly asymmetric systems).
As a result the LCVM model has been found to prevgatisfactory results for systems of
dissimilar component size and systems that comtampolar and polar components at low and

high pressure.

The formulation of the LCVM mixing rule was baseadtwo fundamental observations:

1) Both the Vidal and MHV1 mixing rules may be usgdny pressure, irrespective of the
reference pressure used in their development {iefpressure for Vidal, zero pressure
for MHV1).

2) The mathematical expression representing bothefacate very similar (see Equations
(2.23) and (2.47)), the only differences beingnienerical value represented hyand
the presence &z (b./by), a Florry-Huggins-type term in the MHV1 mixing rule

The reason for combining the two methods is dua¢ofact that in highly asymmetric systems
the Vidal model has been found to under-predictibeipoint pressures while the MHV1 model
has been found to over-predict bubble point presswhich may be seen clearly in FIGURE 3
below. If the two methods were combined in suchay ¥hat the over-prediction of the MHV1
model was compensated for by the under-predictidheoVidal model, accurate results could be
obtained overall. It was therefore proposed to halinear combination af calculated from the
Vidal model (symbolized bwy) anda calculated from the MHV1 model (symbolized doyny),

in order to calculate the trug,. The proposed combination was:
a, =Aa,+[Q-A)a,., (2.65)

wherel is a constant that determines the relative camiobs too, by oy andaypy. Wheni=0
am IS simply aypy and wheni=1 on is simply ay. The LCVM mixing rule may also be
represented as follows by substituting tdorm of the Vidal and MHV1 mixing rules into

Equation (2.65)

A 1-1)\g, (1—/1 j ne (b J ne
a,=|—+ ——+|—— ) zIn| |+ ) za, (2.66)
[/\V /\MHV J RT /\MHV ; b ;
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where Ay and Ayny are theA values of the Vidal and MHV1 mixing rules respeely. Ay

remains unchanged from the originally proposederali+-0.623 for the Peng-Robinson EOS. On
the other hand though, Boukouvales al. decided to fit the linear approximation of the g-
function found in the derivation of the MHV1 mixingle for the Peng-Robinson EOS over a
wider interval ofa, increasing the interval from (10, 13) to (6, Z0his causes a change in the

slope of the straight line approximation (and hethe\ynyv parameter) from -0.53 to -0.52.

In order to determine the value ofi.e. establish to what degregny anday contribute tooy,),
results for the bubble point pressure of many ethmalkane systems were calculated using
values of\ ranging from 0 to 1. Systems containing ethanea(§nand large alkanes were
investigated as the aim of the LCVM method was veroome the problem associated with
representation of systems containing componentdiffar greatly in size. The average absolute
error for each. was then established by comparison with experiaieddta. The result of this

analysis by Boukouvalast al. may be seen in FIGURER2Iow.
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FIGURE 2 Average absolute % error (AAE) in predicted buljidént pressure for ethane/n-alkane systems as a
function of thek value (taken form Boukouvalas al. (1994))

From the results it is obvious that in systems amimg components of similar size, such as
Co/InGs, MHV1 (A=0) provides the best results but the results pexviby Vidal §=1) are still
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fairly good with an average absolute error (AAE)llwegelow 10%. However, as the size
difference between components begins to incredsecitmes evident that there exists a value of
A for which the AAE can be minimized as the VidalaviHV1 models begin to fail severely.
For example if one investigates just thgnCT,s curve of FIGURE 2, the Vidal model produces
results with an AAE of around 70% and the MHV1 mloglelds results with an AAE in excess
of 80%, however the correct combination of the twodels allows predictions with an AAE in

the region of 10%.

Boukouvalaset al. (1994) suggests an optimum value (or reasonabtgommise) forA of 0.36
when using UNIFAC which was found by investigatidgferent binary systems (including
systems of similar and greatly different comporsn¢) at high and low pressure, using varying
values ofA and focusing specifically on acceptable predictadrbubble point pressures and
vapour phase compositions. The result of ugird.36 for the most asymmetrical system tested,
the ethane/ng system, may be seen FIGURE 3. In comparison to the Vidal and MHV1
models, the results of the LCVM model are seenetanich more accurate which confirms the
reliability of this model for predictions of asymirie systems. A similar investigation revealed
that if modified UNIFAC is used, the valuefalls in the range from 0.65 to 0.75.

80 -

70 1 MHV1
N ©Experimental

60 -

LCVM

w
o
Ml bl i a o la g a2t

sy e onoRunil=mime T ard
IS
o

20 -

10 - 0—/

0

Vidal

0.1 0.2 0.3 0.4 0.5 0.6

Xethane

FIGURE 3 Prediction of the bubble point pressure for thetesy ethane / nigat 373K (taken from Boukouvalast
al. (1994))
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Voutsaset al. (1996) provides an extensive comparison of theodets: MHV2, PSRK, Wong-
Sandler and LCVM, investigating the prediction df&/in asymmetric systems by these models.
It was concluded that LCVM was the only model & fbur to provide satisfactory results. The
same paper also states that the LCVM model has dgeressfully used to predict VLE in a

range of systems of varying complexity.

2.3.8VTPR

It has long been known that cubic equations oedtatk the required accuracy when it comes to
representation of saturated liquid densitidblers and Gmehling (2001) identified this and
realized that by starting from an improved CEOSe(dnat was better equipped to calculate
saturated liquid densities) an improved group dbation EOS could be developed. It was with
this in mind that Ahlers and Gmehling began dewelept of a group contribution EOS that
would improve the problems associated with theaalyehighly regarded and successful PSRK
model. Over the next 3 years, Ahletsal. (Ahlers and Gmehling (2002a), Ahlers and Gmehling
(2002b), Wanget al. (2003), Ahlerset al. (2004)) developed this concept further in a 5-part
series and came up with the already successful iv®lTranslated Peng-Robinson (VTPR)

group contribution EOS capable of completely reipigé® SRK.

As stated already, Ahlers and Gmehling (2001) zedlithat improvements could be made to
existing § mixing rules by simply using a better EOS. The aapt of applying a volume
translation to an existing EOS, proposed by Pexetmd Freze (1982), was therefore utilized in

conjunction with the Peng-Robinson EOS as follows:

P RT a
v+c-b (v 9o(wect b+t bw e L

(2.67)
wherec is the translation parameter and effectively shait translates eachterm in the EOS.

The volume translation has no effect on VLE calttates and simply provides significant

improvements in the description of saturated licpedsities.
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The pure componemtparameter can be determined by calculating tHerdifice in experimental

and calculated densities at a reduced temperaju®.7:

C= Voo~ Veuro (2.68)

where the subscriptexp and calc represent molar volumes obtained from experiment and
calculated from the EOS respectively. Ahlers ande@ling (2001) found that, should no
experimental data for liquid densities be availablmay also be calculated directly from critical
data as follows:

C =O.252R-|;
P

c

(1.5448 - 0.402 (2.69)

Equation (2.69) was found by a fitting procedurgp{ained by Ahlers and Gmehling (2001))
which involved investigating liquid densities of 4gure components of different families
(alkanes, aromatics, ketones, alcohols and refigs)y. The results for predictions of liquid
densities by the VTPR EOS were compared to thah@fPeng-Robinson and Soave-Redlich-
Kwong EOS and it was found to be by far the mostieate model. Over a temperature range 0.3
<T, < 1the VTPR EOS (using Equation (2.69)) was fotmbave the lowest deviation in liquid
density from experimental results with a value df94. The Soave-Redlich-Kwong and Peng-

Robinson equations of state deviated from experiateesults by 13.3% and 6.9% respectively.

Near the critical temperature the change with change inl (i.e. the slope wdT) is extreme
and as a result the volume translation conceps,félerefore VTPR may not be used for the
entire temperature range. Ahlers and Gmehling (2P8ays that it is not recommended to use
the VTPR EOS to calculate pure component and nexiquid densities at reduced temperatures
greater than 0.8. Ahlers and Gmehling (2001) atkentified this problem and as a result
investigated the use of a temperature dependarglatéon ternc(T) as they began exploring the
use of volume translation for an improved grouptdbation EOS. Through this investigation an
alternate method to the VTPR EOS was developed hwheed the temperature dependent
volume translation and was called the T-VTPR EQ® T-VTPR method was found to provide
accurate predictions of liquid densities right up the critical point T, = 1) however
representations of VLE at high pressure provededighly unreasonable. As a result it was
decided to base future developments on the VTPR &®@Shot the T-VTPR EOS.
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Obviously the improved description of pure compdnkquid densities also leads to better
representation of mixtures, therefore eliminatimge @f the major problems found when using
the PSRK model. In trying to provide an improvédmujxing rule and replace PSRK, Ahlers and
Gmehling (2002a) identified 3 other areas in whtud PSRK shows weaknesses:

1. The Mathias-Copeman function, used in the calculation of pure compdnan

parameters, is thermodynamically incorrect at highduced temperatures
2. The prediction of asymmetric systems oftenvéedi unsatisfactory results.
3. Predictions of excess enthalpi&sahd infinite dilution activity coefficientg” are poor.

In order to ensure that the VTPR model was an ingarent over the PSRK model, a number of

alterations were made to ideas used in PSRK.

Firstly, the Mathias-Copemam function (Mathias and Copeman (1983)) was replacitia the
Twu a function (Twuet al. (1991), Twuet al. (1995)) for the calculation of pure component
EOSa values. The Twu function provides much more reliable reproductidmpure component
vapour pressures and has been shown to operatmadhg at elevated temperatures (i.e. shows
reasonable temperature extrapolations). At veryh higmperatures thex function should

approach zero and it is under these conditionsthigaiathias-Copemam function fails.

In order to improve predictions of highly asymmetsystems (weakness 2 above), Ahktral.
identified that development of the VTPR model regdithe introduction of improved mixing
rules for calculation of they, and by, parameters. Improvements to the mixing rule dgr
revolved around the fact that in the PSRK modetethare two parameters which represent a
similar property but have different values. Thesgameters are the co-volume of the pure
componentd; (used in the EOS) and the relative van der Waalismver; (used in the UNIFAC
model). As the degree of asymmetry increases thekes are found to become increasingly
different (see FIGURE Hdelow).
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FIGURE 4 Change in the quotientgyandrethane@Ndbakandbethanein dependence of the degree of asymmetry of the
system: (0) parameter b (PR EOS); (*) relative danWaals volume parameter r (taken from Ahlers@ntehling
(2002a))

Ratios relative to ethane are usedFIGURE 4, as the main focus of this study was bemaat
different levels of asymmetry. Based on improversantide to the PSRK model by ét al.
(1998), which introduced an empirical correctiom foore reliable predictions of asymmetric
systems, it was decided that the relative van deaalg/volume; should be replaced by the co-
volume b; in the improved mixing rule model. Using thiseadttion, Ahlers and Gmehling
(2002a) proved that the PSRK mixing rule may beatlyesimplified and improved for

asymmetric system predictions. The following argotrnveas presented to do so:

i. gF calculated using the UNIFAC model consist of twartp, the combinatorial and the

residual part:
gf = chomb+ glrzes (2'70)

The combinatorial part is calculated as followsngspure component relative van der

Waals volumes; and surface areag
Ocomy = RT(Z zIn V+5) zgn Fj (2.71)
i=1 i=1
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whereV; andF; are the volume to mole fraction ratio and the atefarea to mole fraction

ratio respectively, calculated by:

(2.72)

ii. The Florry-Huggins terntzin(b,/b;) in the PSRK mixing rule (Equation (2.62)) can be
rearranged into the following form:

2; In (%] = —er zlny (2.73)

where:

V' = b (2.74)

iii. Now applying the fact that is replaced withy;, one can see that the altered form of the
Florry-Huggins term (Equation (2.73)) is the negatequivalent of the first summation
term in the combinatorial part of the UNIFAC modEljuation (2.71)) and therefore the
two terms can be canceled in the PSRK mixing raleéddition, the second summation in
the combinatorial part provides only a small cdnition (relative to the first summation

term) and is therefore regarded as negligible.

As a result of the above explanation, tfetgrm found in the PSRK mixing rule need only be
represented by the residual part of the UNIFAC rh@¢déich also means that the relative van
der Waals volume parametgris no longer required in the mixing rule) as therfy-Huggins

term disappears.
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The VTPR mixing rule foay, is therefore a simplified version of PSRK given by

Eoa G
=b 1 — <T6S 2.75
A m[; Zbl 0.53087} (2.79)

d:.is calculated in the same way as in the UNIFAC rhode

The constani\ found in MHV1 (Equation (2.47)) is calculated fraanfunction specific to the
EOS used and depends on the reference state wiixivg rule (which affects the reduced liquid

phase volume). For the Peng-Robinson EQSis calculated from:

1 U+(1—\/§)
22 u+(1+x/§)

(2.76)

The reference state of the VTPR method is atmosplpeessure (same as PSRK) and under
these conditiona was determined for 75 compounds in a similar veathat described for PSRK
above, but using the Peng-Robinson EOS insteadhefSbave-Redlich-Kwong EOS. was
assumed constant (as in PSRK — Equation (2.63))aandverage value af = 1.22498 was

calculated. Using this value afthe A parameter in VTPR is -0.53087.

To further improve the performance of the VTPR nlagith respect to asymmetric systems,
Ahlers and Gmehling (2002a) applied the work of i€ke al. (2002), which identified that in
asymmetric systems the mixing rule g has a larger influence than previously anticipated

as a result proposed a quadratic mixing rule febghparameter:

nc nc

bm=224%9 (2.77)

i=1 j=1

whereby the following combining rule applies:

314, 343
b, :(—h ;b' ) (2.78)

The above mixing rule replaces the linear versisedun the PSRK model and has been found to

significantly improve predictions of asymmetric &yss.
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The volume translation parameter c is extendedu$ar in mixtures by a simple linear mixing

rule:

Co =276 (2.79)
i=1

No indication is given in the literature coveringetdevelopment of the VTPR model as to why
this rule was selected, however it is very simpid aesults produced with the model indicate
that the rule works adequately.

The last area of weakness found in the PSRK mddelAhlerset al. aimed to eliminate in the
new VTPR model was the prediction of excess entdslpf and infinite dilution activity
coefficientsy”. To do this they proposed to use temperature-digdninteraction parameters
which would be simultaneously fitted to VLES aAndy” data. Ahlers and Gmehling (2002b) give
detailed information as to how this fitting proceelwvas performed and provides insight into the
objective function used. The reason for using tawripee-dependent interaction parameters is to
ensure reliable predictions for gas-alkane systevh&gh cover a large pressure and temperature
range. As a result, the modified UNIFAC model isdisn VTPR however the group interaction

parameters used are specific to VTPR (i.e. existingified UNIFAC parameters are not used).
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3. THE VGTPR MODEL

To date the PSRK model has become by far the nugsessful § mixing rule developed and is
found in most chemical engineering simulation safev Its success may be attributed mainly to
its reliability, availability of parameters and genof applicability. However, as pointed out by
Ahlers and Gmehling (2002a) and discussed in sec?d.8 above, the PSRK model does
exhibit some serious defects. In order to overctimese, a number of modifications were made
to PSRK, resulting in the development of the VTPRdel. The modifications made in
development of the VTPR model provided an improwaiding rule over PSRK. The VTPR
model allowed better: predictions of saturated iiquolumes (through a volume translated
EOS), representation of asymmetric systems (byidfethe mixing rules), pure component
vapour pressure representation (with the use of#hea function) and calculations of landy”

(by refitting modified UNIFAC (Dortmund) parametedrsa larger experimental data base).

Although the VTPR mixing rule provides a major stépward in the field of mixture
representation in equations of state, it does cowt@e major disadvantage which has resulted in
PSRK remaining as the mixing rule of choice. VTP$esithe modified UNIFAC (Dortmund)
method to calculate®g however it is unable to utilize the large amouohtexisting modified
UNIFAC (Dortmund) group-group interaction paramstéfubic equations of state contain their
own temperature dependence which in combinatiom wie temperature dependence of the
modified UNIFAC (Dortmund) parameters leads to pemus results. To overcome this problem
the modified UNIFAC (Dortmund) group-group interiact parameters have to be re-regressesed
specifically for use in the VTPR model. In order itaprove calculations of a number of
properties when using the VTPR model, these paemhaire regressed using an objective
function that takes into account the differencesxperimental and calculated values of the

following:

- VLE of normal and high boiling components
- Gas solubilities

- Infinite dilution activity coefficients

- Excess enthalpies

- Excess heat capacities

36



- Liquid-liquid equilibria
- Solid-liquid equilibria

Looking at the list above, it is understandablet tthés regression is very complicated and
requires great care to obey all specific boundaygddions, which results in a very time
consuming exercise. As a result the VTPR modelrsfémly a very limited number of group-
group interaction parameters, which severely limits availability for use in calculations.
Although new parameters are being continuously @diénas taken approximately 8 years for
the VTPR parameter matrix to reach its currentesthsplayed in Figure 5 below. The PSRK
model on the other hand has a very large param&ix (which may be seen Figure 6) due
to continuous extension over the past 18 yearsaaral result it will take many more years until
the VTPR model reaches the maturity level of PSBAHtil this happens VTPR will continue to
fall in the shadow of PSRK despite the obvious athges it has over the PSRK model.
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FIGURE 7 Current status of the modified UNIFAC (Dortmund)qaeters available for direct use in the new
VGTPR model (taken from DDBSP — Gmehliegal. (2009))

The idea investigated in this work then involvegepag the VTPR model, while however
utilizing the vast amount of existing (and contiogly advancing) modified UNIFAC

(Dortmund) model parameters instead of undertakimg tedious and difficult task of re-
regressing them for use in VTPR. This will ensurat the new model will not only inherit the
advantages of VTPR but will also increase its raofgapplicability up to and even beyond that

of PSRK. In other words the limiting factor assoethwith the VTPR model will be eliminated.
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The reason for this concept may be easily illusttdiy investigating the differences in existing

model parameters for VTPR and modified UNIFAC igl¥e 5and Figure fespectively.

This idea was first proposed by Dr. Juergen RaRgrdy (2009)) and later investigated by
Collinet et al. (2009). It was postulated that the modified UNIFAIrtmund) parameters could
be used directly if the equality between tHe oglculated from the EOS and from modified
UNIFAC (Dortmund) (Equality (2.15)) was ensured, igth removes the possibility of the

combined double temperature dependence havingrdlwemce on the results. To do this the

VTPR mixing rule fora, was altered and & granslationg;, .term was added as follows:

o[B8 Geet Gans
=b L — ZTes___Trans 2.80
An ”‘[; % b  0.53087 ] (2.80)

Now, in order to calculate"grom an EOS the following equation is required ethis a different
form of Equation (2.16):

Jtos = RTY. zIn(y)) (2.81)

i=1
wherey; is the activity coefficient of componenty; is calculated as follows:

y = & (2.82)

¢

@ is the fugacity coefficient of componentin the mixture calculated from the following

equation:

© 1

In @, - L[| RT_[9P dv-In Z (2.83)
RT v (dn en

wheren; andn; are the number of moles of componeanhdj respectivelyg; in Equation (2.82)

is calculated using Equation (2.17). The presdarm P in Equations (2.17) and (2.83) is

represented by the EOS and therefore the end réspéinds heavily on the mixing rules used.
Should Equation (2.80) be used without thergnslation term (i.e. using the VTPR mixing rule)
and the modified UNIFAC (Dortmund) group-group natetion parameters be used directly, the
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value of § that results from Equation (2.81) is differentrfrahat calculated using modified
UNIFAC (Dortmund) (and substituted into the mixinde). So what theTtranslation term does
is ensure equality between these two calculatibngjever instead of just trying to match the
two ¢ terms it was rather suggested to ensure equadityeen activity coefficients of each

Component:
Vigos =Viy (2.84)

The subscriptsEOSandi,y indicate activity coefficient of componeintalculated from the EOS
and from the § (activity coefficient) model respectively. This sveone due to the fact that there
is a possibility that the twoFgvalues calculated could be identical even wheninlévidual
component activity coefficients are not. If theiaty coefficients for each component calculated
by the two methods are identicaF, will always be identical. In essence the activioefficients
calculated using modified UNIFAC (Dortmund) arewssd correct and the values calculated
from the EOS are matched by making iterative adjests to the,, parameter which is done by
changing the gtranslation term, which in effect is a correctterm.

The Twua-function and the mixing rules fds, andc, remain the same as those used in the
VTPR model.

A downside of this approach is thatig the EOS approach can only be calculated focrstital
components. It was therefore decided to calculaeequality not along the saturated vapour-
pressure curve but at a certain fixed reduced te(reference density) of the pure components
and the mixture. The pressure difference betweinstiate and the saturated state chanfes g
only slightly due to the low pressure dependenceoih the liquid state. The model is now
applicable at sub- and supercritical conditions temperature dependerft model parameters
regressed previously can be used in the EOS ateangerature. This model therefore allows
combination of the volume-translated Peng-Robing@s with the modified UNIFAC method
(with temperature dependent group interaction patars).

This model was originally proposed and tested bW¥ii@ et al. (2009) and was found to provide
very accurate results. VGTPR was found to provideniical predictions to the modified
UNIFAC model for vapour-liquid equilibria, excesatlealpies, activity coefficients at infinite
dilution and solid-liquid equilibria. Using the s¥ence volume, VGTPR was found to give very
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similar results to the PSRK model at subcriticahditons, however under supercritical
conditions VGTPR was found to give markedly betésults than PSRK.

The outlook of the VGTPR model is promising, howeve date little research has been
undertaken in the way of testing the model. Theeefthe purpose of this work is to extensively
investigate the model using the large amount ofegrpental data already stored in the
Dortmund Data Bank (DDB) with the idea of identifgi any problems associated with the
model and resolving these problems should theyt.eiig until now, this work has not been
initiated as a comprehensive review of the literatelated to this topic has been undertaken.

43



4. FUTURE WORK

To date, a comprehensive review of mixing rulescidvic equations of state has been completed
SO as to establish a better understanding of tpie #s a whole and provide a firm foundation
from which to develop the VGTPR model. A great dealre work is still required to complete
the research. The following section aims to idgnivhat tasks still need to be undertaken and
the time frame estimated to perform each.

Completion of literature review

As stated already, a review of the mixing rulesdobic equations of state has been completed
and has been presented in this report. A numbethar topics still require review for the final
thesis. The following topics have been identifischgghly important and will be reviewed in the

future:

- Fundamental thermodynamic concepts used throughisuvork.

- Equations of state (the various types availabld)thea functions available for use in the
cubic equations of state.

- ¢ models.

This should take approximately 1 month to complatayever will be performed intermittently

over the forthcoming months.

Implementation of the VGTPR method

At present the algorithm for the VGTPR method hesstg be written. This will be done using

MATHCAD initially to test individual systems for westigation of results and identification of

any problems associated with the algorithm. It edidved that this should not take too much
time; however should there be major problems whih @lgorithm one could expect the time
frame to increase. With all things running smoottilis could take around 2 weeks, however
depending on the number of problems encountersccthild take up to 1 month. This section of
the project is obviously vital so the work requinedl not be rushed, and should more time be

required for completion, it will be duly granted.
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Testing the method

Once the algorithm for the VGTPR method is finaliztéhe testing phase will begin. This will
require calculating results for a wide variety gstems followed by comparison of the results
with experimental data and predicted results obthifrom other well established group
contribution equations of state (eg. PSRK, LCVM aAfPR). The systems to be tested will
range from simple (containing nonpolar componetagnore complex systems displaying high
levels of asymmetry and non-ideality (containinglapoor associating components). The
performance of the VGTPR model when representingesuitical systems will also be
evaluated. Predictions of a number of differentperties (eg. VLE, f v* etc.) will be carried
out during this testing phase, and compared tolteefwm existing models and experimental
data. Results from existing models will be generatéth the use of the Dortmund Data Bank
software package (DDBSP) (Gmehliagal. (2009)) which has the procedures for these models
built-in. Any pure component data, group-group riatéion parameters and experimental data
that is required will be extracted from the DortrduData Bank (Gmehlingt al. (2009)).

The modified UNIFAC § model is used in the VGTPR mixing rule and assaltethe group-
group interaction parameters between gases anstrilngural groups of modified UNIFAC are
not available. In order to counter this problengsin missing parameters will be regressed to
predictions obtained from the PSRK model which rbayutilized for a large variety of gas-
containing systems. This is obviously not ideakvheer it will provide some ‘ball-park’ values
for the missing parameters and allow predictionsbéo performed on these systems using
VGTPR. These parameters can, at a later stage,olbe atcurately regressed to experimental

data.

Apart from just checking and comparing results, steility of the model will also be tested
which will involve investigations at varying conidibs. The mathematical workings of the
model will also be investigated so as to gain aebatnderstanding of the model which is

essential because in order to make improvementsnoisé understand how it works.

It is expected that this part of the project weljuire a large amount of time, especially when
considering that it is during this phase that peais inherent in the model will be identified and

hopefully rectified. A large amount of data willeteto be generated, organized and examined
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which in itself can be a very long procedure. Cdesng all of this it is expected that this phase

should take in the region of 3 to 4 months.

Thesis write-up

The final task at hand will be to collect the réswdf all 3 previous phases and combine them
into one coherent document. A clear descriptiothefVGTPR model and how it operates will
be provided, while discussions related to the tesofl the testing phase will also be included.
The tedious procedure of compiling a literatureieev should be finished by this phase;
however the discussions will need to be presemtedlear and concise manner. It is estimated
that this should take anywhere from 6 weeks to At

46



5. REFERENCES

Ahlers, J. and J. Gmehling (2001). "Developmenrd dfniversal Group Contribution Equation of
State I. Prediction of Liquid Densities for Purengmunds with a Volume Translated Peng-
Robinson Equation of State." Fluid Phase Equiliil: 177.

Ahlers, J. and J. Gmehling (2002a). "Developmera &fniversal Group Contribution Equation
of State. 2. Prediction of Vapour-Liquid Equilibfier Asymmetric Systems." Ind. Eng. Chem.
Res.41: 3489.

Ahlers, J. and J. Gmehling (2002b). "Developmena dfniversal Group Contribution Equation
of State Ill. Prediction of Vapour-Liquid Equililaii Excess Enthalpies and Activity Coefficients
at Infinite Dilution with the VTPR Model." Ind. En@Chem. Res41: 5890.

Ahlers, J., T. Yamaguchi and J. Gmehling (2004)ev&opment of a Universal Group
Contribution Equation of State. 5. Prediction oé tBolubility of High-Boiling Compounds in

Supercritical Gases with the Group Contribution &en of State Volume-Translated Peng-
Robinson." Ind. Eng. Chem. Re&3: 6569.

Boukouvalas, C., N. Spiliotis, P. Coutsikos, N. Uizaras and D. Tassios (1994). "Prediction of
Vapour-Liquid Equilibrium with the LCVM Model: A lnear Combination of the Vidal and

Michelsen Mixing Rules Coupled with the Original UMC and the t-mPR Equation of State.”
Fluid Phase Equili®2: 75.

Chao, K. C. and R. L. Robinson (1986). ACS Symp. 3@0 571.

Chen, J., K. Fischer and J. Gmehling (2002). "Modifons of PSRK Mixing Rules and Some
Results for Vapour-Liquid Equilibria, Heats of Mg and Activity Coefficients at Infinite
Dilution.” Fluid Phase Equilit20C: 411.

Collinet, E., J. Rarey, T. Yamaguchi and J. Gmeh(ip009). The VGTPR Model: Combining
the Volume Translated Peng-Robinson Equation ofeSMTPR) and the mod. UNIFAC (Do)
Model via an Exact gE Mixing Rule. In Preparation

Dahl, S. and M. Michelsen (1990). "High Pressur@Ma-Liquid Equilibrium with a UNIFAC-
Based Equation of State.” AICHEE: 1829.

Fischer, K. and J. Gmehling (1996). "Further Depaient, Status and Results of the PSRK
Method for the Prediction of Vapour-Liquid Equiliarand Gas Solubilities.” Fluid Phase
Equilib. 121: 185.

Gmehling, J., J. Li and K. Fischer (1997). "Furtiimvelopment of the PSRK model for the

Prediction of Gas Solubilities and Vapour-Liquidudpria at Low and High Pressures I1." Fluid
Phase Equilib141: 113.

47



Gmehling, J., J. Rarey and J. Menke. (2009). "DartdhData Bank.Www.ddbst.com

Holderbaum, T. and J. Gmehling (1991). "PSRK: Apr&ontribution Equation of State Based
on UNIFAC." Fluid Phase Equility0: 251.

Horstmann, S., K. Fischer and J. Gmehling (200B5RK Group Contribution Equation of
State: Revision and Extension II." Fluid Phase ildgul67: 173.

Horstmann, S., A. Jabloniec, J. Krafczyk, K. Figchad J. Gmehling (2005). "PSRK Group
Contribution Equation of State: Comprehensive Rewmisand Extension IV, Including Critical
Constants and Alpha-Function Parameters for 100@goaents.” Fluid Phase EquiliB27: 157.

Huron, M. J. and J. Vidal (1979). "New Mixing Rul@és Simple Equations of State for
Representing Vapour-Liquid Equilibria of StronglyidIdeal Mixtures.” Fluid Phase EquiliB.
255.

Li, J., K. Fischer and J. Gmehling (1998). "Preadmt of Vapour-Liquid Equilibria for
Asymmetric Systems at Low and High Pressures withRSRK Model." Fluid Phase Equilib.
143 71.

Mathias, P. M. and T. W. Copeman (1983). "Extengibthe Peng-Robinson Equation of State
to Complex Mixtures: Evaluation of the Various Farof the " Fluid Phase Equilit91.

Mathias, P. M., H. C. Klotz and J. M. Prausnitzq1® "Equation of State Mixing Rules for
Multicomponent Mixtures: The Problem of Invariaridéluid Phase Equilib67: 31.

Michelsen, M. L. (1990). "A Modified Huron-Vidal Ming Rule for Cubic Equations of State."
Fluid Phase Equilib60: 213.

Michelson, M. L. and H. Kistenmacher (1990). "On ngmsition-Dependent Interaction
Coefficients." Fluid Phase Equilib8: 229.

Mollerup, J. (1986). "A Note on the Derivation ofitihg Rules from Excess Gibbs Energy
Models." Fluid Phase Equilil25: 323.

Peneloux, A. and R. Freze (1982). "A Consistent r&uion for Redlich-Kwong-Soave
Volumes." Fluid Phase Equilil8: 7.

Rarey, J. (2009). An Improved Group Contributionime Translated Peng-Robinson Equation
of State. A. Foster. Personal Communication.

Schwartzentruber, J., F. Galivel-Solastiouk andREnon (1987). "Representation of the Vapour-
Liquid Equilibrium of the Ternary System CarbonDid - Propane - Methanol and its Binaries
with a Cubic Equations of State: A New Mixing RUlEluid Phase Equilib38: 217.

48



Sengers, J. V., R. F. Kayser, C. J. Peters andJJ.White (2000). Equations of State for Fluids
and Fluid MixturesAmsterdam, Elsevier.

Soave, G. (1972). "Equilibrium Constants from a Med Redlich-Kwong Equation of State.”
Chem. Eng. Sci27: 1197.

Stryjek, R. and J. H. Vera (1986). Can. J. Cheng. B4 334.

Twu, C. H., D. Bluck, J. R. Cunningham and J. Eo&¢1991). "A Cubic Equation of State with
a new Alpha Function and a New Mixing Rule." Fl@dase Equilib69: 33.

Twu, C. H., J. E. Coon and J. R. Cunningham (1995New Generalized Alpha Function for a
Cubic Equations of State Part 1. Peng-Robinson taquaFluid Phase Equiliil05: 49.

Vidal, J. (1978). "Mixing Rules and Excess Prom=in Cubic Equations of State." Chem. Eng.
Sci. 33 787.

Voutsas, E., C. Boukouvalas, N. Kalospiros and Rsslos (1996). "The Performance of
EOS/gE Models in the Prediction of Vapour-Liquidultpria in Asymmetric Systems." Fluid
Phase Equilib116 480.

Wang, L.-S., J. Ahlers and J. Gmehling (2003). "@&lepment of a Universal Group
Contribution Equation of State. 4. Prediction ofpgar-Liquid Equilibria of Polymer Solutions
with the Volume Translated Group Contribution Edumatof State.” Ind. Eng. Chem. Re&2:
6205.

Wong, D. S. H. and S. I. Sandler (1992). "A Theigedly Correct Mixing Rule for Cubic
Equations of State."” AIChE 38(5): 671.

49



