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ABSTRACT 

The description of thermo-physical properties of pure components and mixtures, especially the equilibrium between 

two or more phases is of great importance for the design and simulation of chemical processes and many other 

applications.  

The Volume Translated Peng-Robinson (VTPR) model provides an accurate means by which to calculate these 

properties for pure and mixed subcritical, as well as supercritical components, with reliable estimations for 

symmetric and asymmetric systems. However, VTPR requires group interaction parameters and currently the VTPR 

group interaction parameter matrix is small, as regression of these parameters using experimental data requires great 

care in order to obey all known boundary conditions. In contrast though, the modified UNIFAC group interaction 

parameter matrix, which has been continuously extended and improved since 1983, contains considerably more 

information and would be of great use in the VTPR method. The modified UNIFAC parameters however are 

unavailable for use in the VTPR method due to their temperature dependence, which leads to incorrect temperature 

extrapolations when used together with the VTPR mixing rule. 

The new group contribution equation of state VGTPR introduces an excess Gibbs energy translation function into 

the mixing rule, which allows the combination of the volume translated Peng-Robinson EOS with the modified 

UNIFAC group contribution method, and allows the use of the large amount of information associated with 

modified UNIFAC. In the VGTPR method, the equality of gE is obtained by iterative adjustment of the mixture a-

parameter of the EOS and is guaranteed at any temperature. A fixed reduced density of the pure components and the 

mixture is used for extension to supercritical conditions. The pressure difference between this state and the saturated 

state changes gE only slightly due to the low pressure dependence of gE in the liquid state. This model therefore 

allows the combination of the volume translated Peng-Robinson EOS with the modified UNIFAC method (with 

temperature dependent group interaction parameters). 

The VGTPR method is fairly new and until now little has been done in terms of testing the model thoroughly. The 

work performed will provide a re-derivation of the gE translated mixing rule in an attempt to simplify the current 

algorithm and perform comprehensive tests on the VGTPR method, evaluating its performance utilizing the large 

amount of experimental data stored in the Dortmund Data Bank (DDB).  

This report covers a comprehensive review of a number of existing gE mixing rules, looking at the theoretical 

concepts related to their derivations along with the advantages and disadvantages associated with each and follows 

the development of the field over the last 30 years. The idea behind the VGTPR model is introduced and discussed 

before laying out a work plan for future research required. 
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NOMENCLATURE 
 
 
Letters 
 
a - Equation of state attraction parameter 
  or Helmholtz energy 
 
b - Equation of state co-volume 
 
B - Second virial coefficient 
 
c - Equation of state volume translation term 
 
C - Third virial coefficient 
 
D - Fourth virial coefficient 
  or  simplifying function for method of Wong and Sandler (1992) – defined by Equation (2.59) 
 
f - Function defined in derivation by Mollerup (1986) – equivalent to u (reduced liquid volume) 
 
fc - Function defined in derivation by Mollerup (1986) 
 
F - Surface area to mole fraction ratio used in UNIFAC 
 
g - Molar Gibbs free energy 
 
G - Expression used in method of Twu et al. (1991) – defined by Equation (2.14) 
 
h - Function used in derivation by Michelsen (1990) – defined by Equation (2.34) 
  or molar enthalpy 
 
H - Expression used in method of Twu et al. (1991) – defined by Equation (2.13) 
 
k - Binary-interaction parameter 
 
l - Binary-interaction parameter 
 
m - Binary-interaction parameter 
 
n - Number of moles 
 
nc - Total number of components 
 
P - Pressure 
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q - Function used in derivation by Michelsen (1990) – defined by Equation (2.33) 
  or when accompanied by a subscript , the relative van der Waals surface area 
 
Q - simplifying function for method of Wong and Sandler (1992) – defined by Equation (2.58) 
 
r - Relative van der Waals volume 
 
R - Universal gas constant 
 
T - Temperature 
 
u - Reduced liquid phase volume - defined by Equation (2.35) 
 
v - Molar volume 
 
V - Volume to mole fraction ratio used in UNIFAC 
 
z - Mole fraction 
 
Z - Compressibility factor 
 
 
Greek Symbols 
 
α - Shortcut notation for a/bRT 
 
β - Binary-interaction parameter 
 
γ - Activity coefficient 
 
φ - Fugacity coefficient 
 
λ - Relative distribution constant for use in the LCVM mixing rule  
 
Λ - Equation of state specific constant used in gE mixing rules 
  or constant of approximating function used in derivation of MHV1 and MHV2 mixing rules 
 
Ψ - Constant of approximating function used in derivation of MHV1 and MHV2 mixing rules 
 
Γ - Constant of approximating function used in derivation of MHV2 mixing rule 
 
 
Subscripts 
 
∞ - Infinite pressure reference 
 
0 - Zero pressure reference 
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γ - Property calculated from an activity coefficient/gE model 
 
c - Critical property 
 
calc - Result from a calculation 
 
comb - Combinatorial part 
 
EOS - Property calculated from an equation of state 
 
exp - Result from experimental work 
 
f - Component reference letter 
 
i - Component reference letter 
 
j - Component reference letter 
 
k - Component reference letter 
 
l - Component reference letter 
 
m - Property of the mixture (as a whole) 
 
MHV - Calculated by MHV1 mixing rule 
 
res - Residual part 
 
trans - Translation term 
 
V - Calculated by method of Vidal (1978) 
 
 
Superscripts 
 
E - Excess property 
 
^ - Property of a particular component in a mixture 
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1. INTRODUCTION 

The description of thermo-physical properties of pure components and mixtures, especially the 

equilibrium between two or more phases is of great importance for the design and simulation of 

chemical processes and many other applications.  Historically, two different approaches have 

been used to estimate pure component properties and phase equilibria: the equation of state 

(EOS) approach and the excess Gibbs energy (gE) model approach. Cubic equations of state are 

the most popular and widely used type of EOS in industry due to their relative simplicity and 

accuracy in predicting pure component and mixture thermodynamic properties.  A great number 

of gE models exist, however recent developments have seen the introduction of fully predictive 

group-contribution models such as ASOG, UNIFAC and modified UNIFAC which do not 

require binary-interaction parameters found from binary experimental data and are therefore very 

attractive to engineers involved in process design and simulation. Obviously both the equation of 

state method and the activity coefficient method have advantages over the other and outperform 

the other in specific areas. gE models are simple and robust while equations of state allow 

calculations for supercritical systems. A desire to link the two methods and make use of the 

advantages of both, has driven over 30 years of extensive research aimed particularly at utilizing 

the gE model to describe mixture parameters of cubic equations of state. 

The main advantage of cubic equations of state is not in their ability to represent pure 

components but rather their value when representing fluid mixtures. Sengers et al. (2000) believe 

that representation of properties of fluid mixtures is the main, if not the only, purpose of cubic 

and generalized van der Waals equations of state and that when a pure fluid component is of 

interest, equations of this type are not the preferred method for representation. In any case, it is 

widely regarded that there is little room for improvement in the use of cubic equations of state 

for pure components as this field has had a vast amount of time and effort invested into it by past 

researchers. A number of methods have been developed for predictions of various types of pure 

components and therefore cubic equations of state may be used for many polar and non-polar or 

associating compounds. This has created an opinion that very little progress can be made with 

regards to pure component representation by equations of state; however this is by no means the 

case when it comes to EOS use in multicomponent systems. 
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In order to extend the pure component EOS models to mixtures one can use the van der Waals 

one-fluid mixing rule. The one-fluid theory of mixtures is based on the assumption that the EOS 

for a mixture is the same as that for a hypothetical “pure” fluid that has EOS parameters which 

depend on the composition of the mixture. The relationship used to establish mixture parameters 

must describe the concentration dependence of theses parameters and is commonly known as a 

mixing rule. Finding the CEOS mixture parameters is of utmost importance when representing a 

fluid mixture in order to calculate accurate results. This importance is highlighted by Sengers et 

al. (2000) which concludes that the establishment of the mixture parameters is more important 

than the actual PVT relationship embodied within a particular EOS.  

A number of different mixing rules have been developed, each one aiming at improving 

predictions of fluid mixtures using cubic equations of state. Generally each new mixing rule 

improves on previous rules in certain areas, however they fail in others. Some mixing rules have 

also been developed to improve predictions of specific types of mixtures but still fail when used 

to represent other types. Most importantly though, with regards to the work presented in this 

report, a number of mixing rules have been published which use a gE model to describe the 

composition dependence of the EOS parameters; therefore providing the desired link of the two 

methods mentioned above.  The gE takes into account liquid phase non-ideality of the system 

under investigation and introduces it into the EOS model. This results in more reliable 

representation of systems containing polar or associating compounds when using equations of 

state.  Furthermore, it has been shown that should predictive gE models be used, fully predictive 

EOS models may be developed. 

 

 

 

 

 



3 

 

2. MIXING RULES – A REVIEW  

At present one universal mixing rule is not available and research is continuing in order to 

establish a flexible and uncomplicated rule that could predict properties of most multicomponent 

systems with a reasonable level of accuracy. The following section investigates a number of 

methods for extending cubic equations of state to mixtures through the calculation of mixture a, 

b and c (in the case of volume-translated equations of state) coefficients. The review will start 

with the earliest and most simple mixing rule (the quadratic mixing rule) before investigating 

some empirical modifications that were introduced to improve flexibility of the mixing rules. 

The final section provides a comprehensive review of the gE mixing rules which use the gE 

models to define the composition dependence of the mixture parameters. 

Due to the fact that the cubic Peng-Robinson EOS is used in the current method, only rules 

describing mixtures in association with cubic equations of state will be discussed below. Mixing 

rules used in other types of equations of state are not reviewed here. 

2.1 Quadratic Mixing Rules 

The classical quadratic mixing rule is by far the most popular due mainly to its simplicity and the 

relatively high level of accuracy achieved for mixtures containing nonpolar or only slightly polar 

compounds. The origin of this mixing rule lies in basic statistical thermodynamics which is used 

to describe the composition dependence of the virial coefficients. The composition dependence 

of the virial coefficients for a mixture containing nc components is given by: 

 

1 1

1 1 1

1 1 1 1

.

nc nc

m i j ij
i j

nc nc nc

m i j k ijk
i j k

nc nc nc nc

m i j k l ijkl
i j k l

B z z B

C z z z C

D z z z z D

etc

= =

= = =

= = = =

=

=

=

∑∑

∑∑∑

∑∑∑∑

 (2.1) 

where zf  is the mole fraction of component f and Bij, Cijk, Dijkl etc. are sets of virial coefficients 

dependent solely on temperature. Obviously Bff, Cfff, Dffff etc. are just the pure component virial 
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coefficients of f, while the remaining coefficients are known as interaction virial coefficients. 

The subscript m indicates a mixture property. 

The van der Waals equation of state for a fluid mixture can be expanded into a power series 

around zero density to give an expression closely resembling the virial equation: 

 
1

2 3
2 3

1

1 1 1
1 .....

i

m m

i

m
m m m

b a
Z

v RTv

a
b b b

RT v v v

∞

=

 = + − 
 

      = + − + + +      
      

∑
 (2.2) 

where Z is the compressibility factor, a and b are the substance specific equation of state energy 

(attraction) and co-volume parameters, the subscript m indicates a mixture property, R is the 

universal gas constant, T is the temperature and v is the molar volume. Comparison of the density 

virial equation and Equation (2.2) reveals the following relations between the virial coefficients 

and the EOS parameters: 

 
2

3

.

m
m m

m m

m m

a
B b

RT

C b

D b

etc

= −

=

=
 (2.3) 

From Equation (2.1) one can see that the second virial coefficient Bm has a quadratic dependence 

on composition. The EOS coefficients am and bm are linked to Bm by Equation (2.3) and so in 

order to maintain consistency, the composition dependence of am and bm may be at most a 

quadratic function. Conversely, the third virial coefficient has a cubic composition dependence 

which imposes the stricter constraint that the EOS parameter bm should be only a linear function 

of composition. Similar results may be found when considering other equations of state; however 

the simplest function for am (from the van der Waals equation) is given by: 

 
1 1

nc nc

m i j ij
i j

a z z a
= =

=∑∑  (2.4) 

here zf may be the mole fraction of pure component f in the vapour or liquid phase as cubic 

equations of state are capable or representing both phases. aii and ajj are the pure component a 
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parameters calculated using critical properties and the equation associated with the EOS being 

used, while aij (=aji) is the cross term and is related to aii and ajj by the geometric mean rule (a 

combining rule) which contains one adjustable binary-interaction parameter kij (=kji) and no 

composition dependence: 

 ( ) ( )0.5
1ij ii jj ija a a k= −  (2.5) 

When i=j , the binary-interaction parameter equals zero and Equation (2.5) produces the pure 

component a parameter.  

The bm parameter is represented most commonly by the linear mixing rule due to its simplicity: 

 
1

nc

m i i
i

b z b
=

=∑  (2.6) 

The equation above is reasonable as the parameter b only represents the closest packing volume 

possible for a particular type of molecule in a mixture and does not require a complicated 

function for extension from pure components to a mixture. The bm parameter may also be 

calculated by an equation similar to (2.4) and using the combining rule: 

 ( ) ( )1
1

2ij ii jj ijb b b l= + −  (2.7) 

 l ij (=l ji) is a binary-interaction parameter that must be fitted to experimental data. This added 

complexity is only required for mixtures containing components that are highly asymmetric with 

respect to size and is often not utilized.  

As stated above, the quadratic mixing rule is, for most cases, suitable for representation of phase 

equilibria in multicomponent systems which contain either non-polar or slightly polar 

components, however this mixing rule begins to fail severely when applied to systems that 

contain strongly polar and associating compounds. In addition it will always require binary-

interaction parameters specific to the system being investigated which requires experimental 

results and a fitting procedure, removing the possibility of a fully predictive model. 
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2.2 Composition-Dependent Combining Rules 

In order to account for the shortcomings of the quadratic mixing rule a number of empirical 

modifications have been made. These modifications aim at increasing flexibility of the mixing 

rule to correlate phase behavior of mixtures containing strongly polar or associating compounds 

(non-ideal solutions), which is a trait greatly lacking in the original quadratic mixing rule. These 

modifications are implemented to improve the calculation of the cross terms (aij) and in effect 

introduce some composition dependency into the originally composition-independent combining 

rule (Equation (2.5)) of the classical quadratic mixing rule. The mixing rule for am (Equation 

(2.4)) remains the same for most methods and only modifications to the cross term calculation 

are made. 

Chao and Robinson (1986) and Stryjek and Vera (1986) implemented combining rules that 

require two binary-interaction parameters kij and kji, as opposed to the single binary-interaction 

parameter (kij=kji) found in the original quadratic mixing rules. The proposed combining rules 

were respectively: 

 ( ) ( )( )0.5
1ij ii jj ij ij ji ia a a k k k z= − + −  (2.8) 

 

 ( ) ( )
0.5

1 ij ji
ij ii jj

i ij j ji

k k
a a a

z k z k

 
 = −
 + 

 (2.9) 

The combining rule of Chao and Robinson (1986) was later extended by Schwartzentruber et al. 

(1987) to include a third parameter ultimately increasing the flexibility and accuracy of the 

quadratic mixing rule but at the same time increasing its complexity. The proposed combining 

rule was given as: 

 ( )0.5
1 ij i ji j

ij ii jj ij ij
ij i ji j

m z m z
a a a k l

m z m z

 −
= − −  + 

 (2.10) 

where kij=kji, l ji=-l ij, mji=1-mij and kii=l ii=0.  

While the composition-dependent combining rules do provide a simple method for extension of 

equations of state to mixtures containing non-polar or associating compounds, and do so with a 
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satisfactory level of accuracy, they have been found to contain a serious defect. Michelson and 

Kistenmacher (1990) investigated composition-dependent combining rules and found that they 

provide different results when a system is considered to be composed of its actual components to 

when it is considered to be composed of subcomponents of the actual components. Sengers et al. 

(2000) explains the problem as follows: ‘If a binary mixture with composition (x1, x2) is treated 

as a ternary system with composition (x1, x2, x3), where the ternary mixture is formed by dividing 

component 2 into two pseudocomponents with identical properties, a different value for the 

parameter a will result. Therefore, the calculated properties will depend on the number of 

pseudocomponents, which is in contrast to experimental evidence’. Many researchers attempted 

to overcome the Michelsen-Kistenmacher problem while maintaining the obvious advantages of 

the composition-dependent combining rules. Mathias et al. (1991) produced an equation that 

overcame this problem by adding a new composition-dependent term to the classical quadratic 

mixing rule and not just altering the combining rule as was done by previous authors associated 

with the flawed composition-dependent combining rules. The new mixing rule proposed was: 

 ( ) ( ) ( )
3

1/30.5 1/2 1/3

1 1 1 1

1
nc nc nc nc

i j ii jj ij i j ii jj ji
i j i j

a z z a a k z z a a l
= = = =

  = − +     
∑∑ ∑ ∑  (2.11) 

 lji may or may not equal –lij depending on the level of accuracy and complexity required. 

Twu et al. (1991) also proposed a revised mixing rule that overcame the Michelsen-

Kistenmacher problem and contained an extra term to that of the classical quadratic one: 

 ( ) ( )
( ) ( )

3
1/3 1/6

1/2 1

1 1 1

1

1

nc

ij ij ii jj jnc nc nc
j

i j ii jj ij i nc
i j i

ij j
j

H G a a z

a z z a a k z
G z

=

= = =

=

 
 
 = − +
∑

∑∑ ∑
∑

 (2.12) 

where: 

 
ji ij

ij

k k
H

T

−
=  (2.13) 

 

 ( )expij ij ijG Hβ= −  (2.14) 
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This mixing rule can either be used as a 2-parameter model by fitting both kij and kji to binary 

experimental data or it can be used as a more accurate 4-parameter model whereby βij and βji are 

also fitted. 

2.3 Mixing Rules Using Excess Gibbs Energy (gE)/ Activity Coefficient Models 

The classical quadratic mixing rule can at most only be applied to mixtures of slight solution 

non-ideality. In order to improve this, alterations to this rule was necessary which required a 

higher level of complexity along with the fitting of binary experimental data to find binary-

interaction parameters and led to the development of the composition-dependent combining 

rules. In some cases as many as 4 binary-interaction parameters need to be fitted to experimental 

data, which is obviously not ideal. 

Highly non-ideal solutions (containing non-polar and associating compounds) have been 

described using gE (or activity coefficient) models with great success. Therefore much effort has 

been dedicated to combining these models with equations of state in order to extend EOS 

applicability to non-ideal solutions, and consequently utilize the attractive features of both 

classes of models. 

The gE of a solution can be calculated in two ways: with the use of an appropriate gE model 

(most common) and with the use of an EOS via fundamental thermodynamic equations. 

Therefore the EOS mixing rule composition dependence for the liquid phase can be reflected by 

a desirable gE model if the different expressions are matched as follows:  

 E E
EOSg gγ =  (2.15) 

The subscript γ indicates calculation by a gE model (activity coefficient γ model) while the 

subscript EOS indicates calculation by means of an EOS. If one assumes that the linear mixing 

rule for bm (Equation (2.6)) applies, the am parameter may then be found by assuming that 

Equation (2.15) holds true. 
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A number of models exist which can be used to calculate Egγ such as NRTL, UNIQUAC, 

UNIFAC and many more. E
EOSg is calculated using a specific EOS and the following equation: 

 
1

ln ln
nc

E
EOS m i i

i

g RT zϕ ϕ
=

 = − 
 

∑  (2.16) 

where φm and φi are the mixture and pure component fugacity coefficients respectively and are 

calculated from the following equation which is specific to pure components:  

 
1

ln 1 ln
vPv Pv RT

P dv
RT RT RT v

ϕ
∞

 = − − + − 
 
∫  (2.17) 

Equation (2.17) may be used to calculate φm as the mixture is assumed a pure fluid with pure 

component EOS parameters equal to am and bm. It is important to note that this expression may 

not be used to calculate fugacity coefficients of a particular component in the mixture. The P 

term is represented by a pressure explicit EOS and is therefore a function of v.  

The more recent advancement in the field of gE models, through ASOG, UNIFAC and modified 

UNIFAC, has seen the development of accurate models based on the group-contribution concept. 

These models do not require binary experimental data, they only require group-group interaction 

parameters, and as a result are fully predictive. If a predictive gE model is used in Equation 

(2.15) to develop the gE-mixing rule, a predictive group-contribution EOS (GCEOS) results. If a 

predictive method is used to determine the composition dependence of the EOS parameters, no 

binary experimental data is required and the EOS becomes fully predictive too. This is obviously 

a major advantage that was not evident when the investigation into gE mixing rules first began 

due to the immaturity of the field of predictive gE models, however at present it continues to 

drive further research into more accurate methods.  
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Combining cubic equations of state with group-contribution gE models to obtain a mixing rule 

extends the applicability of cubic equations of state to the prediction of VLE in three major 

areas: 

1. Polar systems at low pressure, where the GCEOS in essence matches the performance of 

the gE model with the γ-φ approach. 

2. Polar systems at high pressure, where conventional mixing rules have been found to fail. 

3. Systems that contain supercritical components, wherein gas molecules are considered as 

new groups. 

The following sections will cover major developments made in the field of gE mixing rules from 

the first idea proposed by Vidal (1978) to the development of the most recent VTPR model 

(developed in early 2000).  

2.3.1 Vidal 

Vidal (1978) was the first to use a gE model to establish a mixing rule for an EOS in order to 

allow modeling of highly non-ideal systems. The Redlich-Kwong EOS was used and as a result 

application of Equation (2.16) yielded the following expression: 

 

( )
1 1

1

( )
ln ln ...

... ln ln

nc nc
i iE m m

EOS i m i i
i i

nc
m m m i i i

i
im m i i

P v bP v b
g RT z Pv z Pv

RT RT

a v b a v b
z

b v b v

= =

=

 − − = − − + − +   
    

   + +− +   
   

∑ ∑

∑
 (2.18) 

where vm is the mixture molar volume, ai and bi the pure component EOS parameters of 

component i and vi is the pure component molar volume of component i. Equation (2.18) still 

contains a number of unknowns (namely bm, vm and all vi) that  would restrict its use in finding a 

useful expression for am. In order to eliminate these terms from Equation (2.18) and arrive at an 

explicit expression for am an infinite-pressure limit was applied. Due to the fact that the mixture 

EOS parameters are independent of pressure, calculations at different pressures should not affect 

the calculated parameters assuming the parameters calculated away from the system pressure (in 

this case at infinite pressure) are calculated correctly. The infinite pressure limit allows one to 

make the assumption that the fluid is compressed to such an extent that the molar volume of the 
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fluid would be equal to the closest packing volume of the molecules (i.e. the molecules are 

compressed so as to be in contact with each other, and the only intermolecular space exists 

between contacting molecules). The b (co-volume) EOS parameter represents the closest packing 

volume of the molecules and therefore the following assumption could be made, which 

effectively removes the unknown fluid molar volumes (vm and vi) from Equation (2.18):    

 m mv b=  (2.19) 

 

 i iv b=  (2.20) 

It was also noted that in order for the gE to be finite (i.e. not be infinite) as pressure approaches 

infinity, the excess volume vE must be assumed to be zero. If vE is not zero then gE will approach 

infinity as pressure approaches infinity. This can be seen by investigating the following 

expression (which is developed from the fundamental property relations): 

 
E E Eg a Pv= +  (2.21) 

where aE is the excess Helmholtz energy. The above deduction implies that the linear van der 

Waals mixing rule must be used for the bm parameter. 

Substitution of the linear b mixing rule along with Equation (2.19) and (2.20) into Equation 

(2.18) followed by rearrangement produces the following expression which applies only at 

infinite pressure: 

 
1 ln 2

Enc
i

m m i
i i

a g
a b z

b
∞

=

 
= − 

 
∑  (2.22) 

where Eg∞  is the gE at infinite pressure and may be calculated using  a gE model (assuming 

Equality (2.15) holds).  

In using an infinite pressure limit it was assumed that gE is independent of pressure. The 

recommended model for gE calculation was NRTL and the result from using this model was used 

directly in Equation (2.22) even though the model parameters were fitted using data obtained 

from low to moderate pressure systems. By making this assumption one could use existing 

model parameters to calculate the Eg∞ term without having to refit model parameters to high 
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pressure data. Although it was known that gE does have a dependency on pressure it was 

originally decided that the dependency was so slight that the tedious model parameter fitting 

process could be avoided.   

Obviously this assumption is incorrect and will lead to erroneous results, however the mixing 

rule can be used to provide satisfactory results for highly non-ideal systems if the gE model 

parameters are refitted using high pressure data so that a more correct value for Eg∞ is obtained. 

Having said this though, Sengers et al. (2000) points out a number of theoretical and 

computational difficulties associated with the Vidal mixing rule. These include inaccurate 

representations for non-polar hydrocarbon mixtures, failure of the second virial coefficient 

boundary condition at the low-density limit (quadratic composition dependence – see Equation 

(2.1)) and, as already discussed, the need to refit gE model parameters to account for elevated 

pressure conditions. Sengers et al. (2000) also states that the gE model parameters are strongly 

dependent on temperature so that, while it is good for correlations, it has limited extrapolative or 

predictive capability. 

 

2.3.2 Huron-Vidal 

The work of Vidal was later extended slightly by Huron and Vidal (1979), who did not alter or 

extend the concepts proposed by Vidal but identified that Equation (2.22) can be generalized to 

other equations of state. The general form proposed by Huron and Vidal was:  

 
1

Enc
i

m m i
i i

a g
a b z

b
∞

=

 
= − Λ 

∑  (2.23) 

where Λ is a numerical constant that depends on the particular EOS that is used. Huron and 

Vidal (1979) derived gE mixing rule expressions for am using the van der Waals, Soave-Redlich-

Kwong and Peng-Robinson equations of state using the same procedure as Vidal (1978) (which 

investigated the Redlich-Kwong EOS).  
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The following expressions for Λ were found: 

van der Waals:    1Λ =  

Redlich-Kwong:   ln 2Λ =  

Soave-Redlich-Kwong:  ln 2Λ =  

Peng-Robinson:   
1 2 2

ln
2 2 2 2

 +Λ =   −   

2.3.3 Mollerup 

It soon became evident, following the work of Vidal and Huron and Vidal, that the gE calculated 

from an EOS and from a gE model needed to be linked at low pressure rather than at infinite 

pressure so that the large amount of existing (low pressure) activity coefficient model parameters 

could be utilized, therefore removing the need to measure data and refit model parameters at 

elevated pressures. Mollerup (1986) was the first to move the field in this direction by matching 

the gE from the EOS and an appropriate model at zero pressure. In deriving the mixing rule 

Mollerup managed to avoid the assumptions made by Vidal that gE calculated from an EOS at 

infinite pressure equals that calculated by a gE model (using low pressure parameters) and that 

the co-volume parameter b equals the volume v at infinite pressure. Mollerup still assumed that 

vE is zero, however made the assumption that Equation (2.15) applies at a pressure of a few 

atmospheres or less which is far more reasonable as the gE model parameters are most commonly 

established using low to moderate pressure data.  

Mollerup (1986) derived the following expression using the van der Waals EOS:   

 
1 1

1

ln 1 ln 1 ...

... ln

E nc nc
EOS m m i i

i i
i im m i i

Enc
i

i
i m

g b a b a
z z

RT v RTv v RTv

v Pv
z

v RT

= =

=

   
= − − − + − + +   

   

 
+ + 

 

∑ ∑

∑
 (2.24) 

If one then assumes that saturated liquid volumes are independent of pressure (a reasonable 

assumption by all accounts), the pressure term in the van der Waals EOS may be neglected (P = 

0) and the equation can be solved for b/v to give: 
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1/2
1 4

1 1
2

b RTb

v a

  = + −  
   

 (2.25) 

which may be applied to both the mixture and pure components. Mollerup (1986) states that at 

low pressures (less than a few atmospheres) Equation (2.25) is accurate to within 1 percent.  

The following terms were defined in the derivation: 

 i
i

i

b
f

v
=  (2.26) 

 

 m
m

m

b
f

v
=  (2.27) 

 

 

1

1

i

i
c

m

m

v

b
f

v

b

 
− 

 =
 

− 
 

 (2.28) 

which allowed the solution of Equation (2.24) with respect to (am/bm) to be found (also applying 

the assumption that vE = 0): 

 0

1 1

ln
Enc nc

m i i c i
i i

i im i m m m m

a a f g f bRT
z z

b b f f f b= =

     
= − +     

     
∑ ∑  (2.29) 

where 0
Eg is gE at the zero reference pressure. 

f (for pure components and mixtures) is only a weak function of temperature and in the case of 

mixtures is also dependent on composition, however Mollerup (1986) states that f may be 

regarded as a constant for practical applications. Following this, Mollerup identified that if b/v 

for the pure components and for the mixture can be assumed equal, then fi = fm and fc = 1, and 

found that at the normal boiling point f is in the region of 0.8 for liquids when using the van der 

Waals EOS. All of this applied to Equation (2.29) results in the following explicit expression for 

am: 
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1 1

1
ln

0.8

nc nc
Ei i

m m i i
i ii m

a b
a b z g RT z

b bγ
= =

   
= − −    

    
∑ ∑  (2.30) 

The assumption that fi = fm and the assumption that both are equal to some constant found from 

experimental data was a huge step forward and has been used in the development of many gE 

mixing rules since. 

2.3.4 Modified Huron-Vidal 

Michelsen (1990) extended the idea proposed by Mollerup and matched the gE at a reference 

pressure of zero using the Soave-Redlich-Kwong EOS. In doing so the following expression was 

developed which in contrast to the Huron-Vidal mixing rule is not explicit: 

 0

1 1

ln ( ) ( )
E nc nc

m
i m i i

i ii

g b
z q z h

RT b
α α

= =

 
+ = − 

 
∑ ∑  (2.31) 

where α is a shortcut notation used to combine variables in the following way: 

 

m
m

m

i
i

i

a

b RT

a

b RT

α

α

=

=
 (2.32) 

q and h are functions of αm and αi respectively and are given by: 

 ( ) ( ) ,0
,0

,0

1
1 ln 1 ln m

m m m
m

u
q u

u
α α

 +
= − − − −   

 
 (2.33) 

 ( ) ( ) ,0
,0

,0

1
1 ln 1 ln i

i i i
i

u
h u

u
α α

 +
= − − − −   

 
 (2.34) 

 

 

 



16 

 

um,0 and ui,0 are the reduced liquid phase volumes of the mixture and pure components at zero 

pressure respectively: 

 

,0

0

,0

0

m
m

m P

i
i

i P

v
u

b

v
u

b

=

=

 
=  
 

 
=  
 

 (2.35) 

  

 

Equation (2.33) and Equation (2.34) display the dependence of q and h on the parameters αm and 

αi.  um,0 and ui,0 in these functions can be expressed as functions of α by first converting the 

Soave-Redlich-Kwong EOS into the following general form: 

 
1

1 ( 1)

Pb

RT u u u

α= −
− +

 (2.36) 

At the reference pressure of zero Equation (2.36) reduces to: 

 
0 0 0

1
0

1 ( 1)u u u

α= −
− +

 (2.37) 

Solving Equation (2.37) for u0 and taking the smallest (liquid) root, produces the following 

expression for u0 as a function of α: 

 ( )( )1/22
0

1
1 6 1

2
u α α α= − − − +  (2.38) 

valid for α > 5.83. Equation (2.38) is used to represent both um,0 and ui,0.   

Michelsen (1990) states that gE  model parameters are based mainly on binary mixtures at or near 

atmospheric pressure and under these conditions αi are far removed from the limiting value, with 

typical values (at the normal boiling point) ranging from 10 to 13. As a result of this, Michelsen 

(1990) investigated the behavior of the q and h-function within this range, and noticed that they 

vary almost linearly with respect to α. This can be seen in Figure 1 below. 
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FIGURE 1 Variation of q or h-function with respect to α for the SRK EOS also showing the linear fit in 

the range 10 < α < 13: (---) q or h-function, (―) linear fit 

The idea of Michelsen (1990) was then to replace the q and h-function given by Equations (2.33) 

and (2.34) with linear approximations: 

 0 1( )m mq q qα α≈ +  (2.39) 

 ( ) 0 1i ih h hα α≈ +  (2.40) 

By substituting these straight line approximation into Equation (2.31), the right-hand side  of the 

equation is approximated as: 

 0 1 0 1
1 1

( ) ( )
nc nc

m i i m i i
i i

q z h q q h h zα α α α
= =

− ≈ + − −∑ ∑  (2.41) 

By comparing Equation (2.39) and Equation (2.33) one can see:  

 

( )0 ,0

,0
1

,0

1 ln 1

1
ln

m

m

m

q u

u
q

u

= − − −

 +
= −   

 

 (2.42) 
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similarly, for Equation(2.40) and Equation (2.34): 

 

( )0 ,0

,0
1

,0

1 ln 1

1
ln

i

i

i

h u

u
h

u

= − − −

 +
= −   

 

 (2.43) 

and following the assumption of Mollerup (1986) that the reduced liquid phase volume (termed f 

in the work of Mollerup) is constant and the same for the pure components as for the mixture, 

i.e.: 

 
,0 ,0

0 0

m i
m i

m iP P

v v
u u

b b
= =

   
= = =   

   
 (2.44) 

the following conclusion may be drawn: 

 
0 0

1 1

q h

q h

= = Ψ
= = Λ

 (2.45) 

where Ψ and Λ are constants.  

This then results in a much simpler version of Equation (2.41): 

 
1 1

( ) ( )
nc nc

m i i m i i
i i

q z h zα α α α
= =

 − ≈ Λ − 
 

∑ ∑  (2.46) 

Equation (2.31) can therefore be rearranged into the following explicit form for calculation of am: 

 
1 1

1
ln

nc nc
Eii m

m m i i
i ii i

a b
a b z g RT z

b bγ
= =

   
= + +     Λ    

∑ ∑  (2.47) 

Λ is found by fitting a straight line to a plot of the q-function (or h-function) between α-values of 

10 and 13 and establishing the slope. Λ depends only on the EOS used as this determines the 

type of q-function (or h-function) obtained in achieving an expression of form similar to 

Equation (2.31). The q and h-function of Equation (2.33) and (2.34) are specific to the Soave-

Redlich-Kwong EOS and yields a Λ value of -0.593. Michelsen (1990) did a similar analysis to 

that of the Soave-Redlich-Kwong EOS using the Peng-Robinson EOS and the van der Waals 
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EOS and found Λ values of -0.53 and -0.85 respectively. Equation (2.47) became known as the 

Modified Huron-Vidal First-Order mixing rule (MHV1) due to its similarity to the Huron-Vidal 

mixing rule and the fact that a linear (first order) approximation is used to represent the q and h-

function.  

A Modified Huron-Vidal Second-Order mixing rule (MHV2) was first proposed by Michelsen 

(1990) and later implemented by Dahl and Michelsen (1990), wherein a second order (quadratic) 

approximation is used to represent the q and h-function. This makes sense as these functions are 

not perfectly linear (see FIGURE 1 above) and may be better approximated by a quadratic 

expression, therefore producing better results. The quadratic approximations are: 

 
2

0 1 2( )m m mq q q qα α α≈ + +  (2.48) 

 

 ( ) 2
0 1 2i i ih h h hα α α≈ + +  (2.49)  

Once again one finds that the constants in the pure component and mixture approximations are 

identical: 

 

0 0

1 1

2 2

q h

q h

q h

= = Ψ
= = Λ
= = Γ

 (2.50) 

where Γ is a constant.  Use of this approximation in equation (2.31) does provide improved 

results over the MHV1 method, however there is added complexity as the resultant expression is 

not explicit and as stated by Michelsen (1990) ‘the neatness associated with a simple explicit 

mixing rule is lost’. 
 

The MHV2 equation is: 

 2 2

1 1 1

ln
Enc nc nc

m
m i ii m i ii i

i i i i

g b
z z z

RT b
γα α α α

= = =

    Λ − + Γ − = +     
     

∑ ∑ ∑  (2.51) 

The universal Λ and Γ parameters can be found by fitting a second-order polynomial to the EOS-

specific approximation function.  
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The recommended values are: 

Soave-Redlich-Kwong  EOS:  Λ = -0.4780 Γ = -0.0047 

Peng-Robinson EOS:    Λ = -0.4347 Γ = -0.003654 

Both MHV1 and MHV2 have been found not to satisfy the second-virial coefficient boundary 

condition. Having said this though, both models provide very reasonable correlations and 

predictions of data obtained from experiment for systems that are highly non-ideal. 

2.3.5 Wong-Sandler 

Wong and Sandler (1992) proposed a new method to link the gE model results with EOS 

computations in order to obtain a mixing rule for the EOS am and bm parameters. Attempts to 

match gE at zero pressure were abandoned and the fact that excess Helmholtz energy aE is 

virtually independent of pressure was investigated, resulting in aE calculated from an EOS being 

used to develop the mixing rule. There are two major advantages of using aE instead of gE. The 

first is that the assumption that vE = 0 is no longer required as when using gE and the second, as 

stated already, is that aE is not as strongly dependent on pressure as gE. 

The basis of the work done by Wong and Sandler is summarized by the following expression: 
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( )
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a T P z a T P z

a T P low z

g T P low z

= ∞ = = ∞

= =

= =

 (2.52) 

The following argument is used in order to arrive at Equation (2.52): At sufficiently low 

pressures the PvE term of Equation (2.21) is very small. This implies that gE is equivalent to aE at 

low pressure. aE is essentially independent of pressure (or density) and as a result aE at low 

pressure is equivalent to aE at infinite pressure. Therefore the aE of a system calculated at infinite 

pressure using an EOS may be equated to the gE of the system calculated using a gE model, 

which is essentially a low pressure calculation (due to the original fitting of model parameters 

using low-pressure data).  

The equality between the gE at low pressure and the aE at infinite pressure is used to establish the 

composition dependence of the mixture EOS parameters. Wong and Sandler had to also use the 
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composition dependence of the second virial coefficient to relate the pure component a and b 

parameters to the equivalent mixture parameters. Equation (2.1) and (2.3) may be linked to give 

an expression representing the second virial coefficient composition dependence: 

 
1 1

nc nc
m

m i j ij
i j

a
b z z B

RT = =
− =∑∑  (2.53) 

 The cross term Bij is calculated by: 
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RT RT RT

   = − = − + − −   
    

 (2.54) 

where kij is a binary parameter which is most commonly regressed using low-pressure 

experimental data. 

Calculation of aE from a van der Waals type EOS at infinite pressure results in the following 

expression: 
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 
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∑  (2.55) 

where Λ is a constant dependent on the EOS used. For the Soave-Redlich-Kwong and Peng-

Robinson EOS Λ is equal to –0.693 and -0.623 respectively.  

Using Equation (2.52) Wong and Sandler were able to convert Equation (2.55) into the following 

form: 

 
1

Enc
i

m m i
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ga
a b z
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=

 
= −  Λ 

∑  (2.56) 

The bm parameter is not calculated by the simple linear mixing rule in the Wong-Sandler method, 

instead it was ensured that the second virial coefficient composition condition is satisfied. This 

was achieved by substituting the expression for am (Equation (2.56)) into the equation 

representing the second virial coefficient composition dependence (Equation (2.53)) and 

rearranging to get an explicit function for bm: 
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If Q and D are defined as follows: 
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then the Wong-Sandler mixing rule may expressed as: 

 
1m

D
a RTQ

D
 =  − 

 (2.60) 
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D
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−
 (2.61) 

2.3.6 PSRK 

Holderbaum and Gmehling (1991) developed a group-contribution EOS that combined the SRK 

EOS and the UNIFAC method. The method is known as Predictive Soave-Redlich-Kwong 

(PSRK) due to its predictive abilities (as there was no introduction of new parameters which 

would require a fitting procedure, only existing UNIFAC group-interaction parameters and pure 

component parameters are required). The PSRK model can be used for predictions of VLE over 

a temperature and pressure range much wider than that possible with UNIFAC, and may also be 

easily extended for use in supercritical systems, which is not possible with the use of a gE model.  

Holderbaum and Gmehling (1991) reveals that the PSRK model uses the simple MHV1 mixing 

rule (Equation (2.47)) differing only in the value of Λ which is changed from -0.593 to -0.64663, 

however not much insight is provided as to how this value was determined.  
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The PSRK mixing rule is: 
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b bγ
= =
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The new Λ value though was found to provide much improved results at elevated pressure which 

led Holderbaum and Gmehling (1991) to conclude that ‘the PSRK equation is especially suited 

for conditions, where use of a γ-φ-approach is difficult (i.e. when the real behavior of the vapour 

phase is unknown and not negligible) or inadequate (i.e. when supercritical components are 

present)’. 

Following the innovative work of Wong and Sandler (1992), Fischer and Gmehling (1996) 

provided an alternative derivation of the PSRK model which was based on aE as opposed to the 

fugacity coefficients. This derivation provides more insight into the value of Λ. In deriving the 

PSRK equation Fischer and Gmehling (1996) makes two main assumptions: 

1. The excess volume vE is zero (negligible), which is an assumption made during the 

derivation of many gE mixing rules. 

2. The reduced liquid phase volume u is assumed constant, i.e.: 

 m i
m i

m i

v v
u u u

b b
= = = =  (2.63) 

The second assumption was validated by calculating liquid molar volumes of a large number of 

pure components at normal pressure and boiling temperature and subsequently dividing this 

value by b (which is calculated using pure component data). The values of u were found to vary 

only slightly from 0.9 for highly polar components (methanol and water) to 1.2 for non-polar 

components (ethane, propane, butane etc.), with an average value of 1.1. If one considers that at 

infinite pressure u = 1, a value of 1.1 at atmospheric pressure is not unreasonable due to the fact 

that liquids may be compressed only slightly. As a result of u being estimated at atmospheric 

pressure the reference pressure of the PSRK model is in the region of 1 atmosphere (and not zero 

as is the case in the MHV mixing rules).  
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Through this alternative derivation it is seen that the value of Λ in Equation (2.47) is equivalent 

to a function of u as follows: 

 ln
1

u

u
 Λ =  + 

 (2.64) 

Substitution of u = 1.1 results in the value of Λ equal to -0.64663 which is the value prescribed 

earlier by Holderbaum and Gmehling (1991). From Equation (2.64) one can also see that the 

constant u value assumption inherent in the MHV1 model requires a value of 1.235 for u at zero 

pressure, which is also not unreasonable as the molar volume of the liquid phase would increase 

slightly under reduced pressure conditions. So, the MHV1 model uses a zero pressure reference, 

while the PSRK model assumes a reference state at atmospheric pressure. gE model parameters 

are most commonly fitted using low pressure VLE data (not zero pressure data), therefore by 

using a reference pressure in the region of 1 atmosphere more accurate results will be produced.  

In developing the PSRK model, other than altering the mixing rule for am, Holderbaum and 

Gmehling (1991)  also decided to replace the original temperature dependence of the pure 

component a parameter (α function) given by Soave (1972) with that given by Mathias and 

Copeman (1983). This modification was made in order to extend the applicability of the PSRK 

model to polar mixtures, as the original temperature dependence given by Soave fails to provide 

sufficiently accurate vapour pressure data for polar substances. The Mathias-Copeman 

expression is found to provide much improved representation of pure component vapour 

pressures, which obviously improves the reliability of predictions for polar mixtures. The only 

downside of this is that the Mathias-Copeman expression requires three adjustable parameters 

which must be fitted to pure component vapour pressure data (which may not be readily 

available), while the Soave expression only requires the pure component acentric factors and 

critical temperatures. As pointed out by Ahlers and Gmehling (2002a), the Mathias-Copeman α 

function also fails at elevated temperatures.  

There are a number of advantages associated with the PSRK model such as the ability to provide 

accurate predictions of VLE over a large pressure range (i.e. use UNIFAC parameters fitted at 

low pressure for predictions at high temperature and pressure) and the fact that parameters 

associated with any gE model do not have to be altered but may be used directly in the model. 

For example, should the NRTL model be used instead of UNIFAC, the existing interaction 
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parameters may be used without modification. Holderbaum and Gmehling (1991) also states that 

the main advantage of equations of state in comparison to gE models (γ-φ approach) is their 

ability to represent phase equilibria of systems that contain supercritical components and because 

of this the UNIFAC interaction parameter table has been extended to include gases (eg. CO2, 

CH4, N2 etc.) for use in the PSRK model. This extension has been continuous and had vast 

amounts of research invested into it by Holderbaum and Gmehling (1991), Fischer and Gmehling 

(1996), Gmehling et al. (1997), Horstmann et al. (2000) and Horstmann et al. (2005) to name a 

few,  and as a result has seen the addition of well over 30 new groups to the original UNIFAC 

groups. This extension has obviously greatly increased the range of applicability of the PSRK 

model and this, along with the fact that it predicts reliable results, has made it a very important 

tool to chemical engineers.  Having said this though, there are also a number of limitations 

related to the PSRK model. Fischer and Gmehling (1996) identifies two major shortcomings of 

the method. The first is in the ability of PSRK to describe water-alkane systems (a problem 

inherent in the UNIFAC method) and second is the prediction of too high bubble point pressures 

in systems that contain components that differ greatly in size. Ahlers and Gmehling (2002a) 

identifies 4 major problems with the PSRK model and in doing so strengthens the argument for 

the development of an improved model (see VTPR below): 

1) Predicted liquid densities deviate from experimental values in a similar way to the basic 

EOS (the SRK EOS). 

2) The Mathias-Copeman α function provides unreasonable results at higher reduced 

temperatures. 

3) Predictions of VLE for asymmetric systems are often unsatisfactory.  

4) Predictions of excess enthalpies (hE) and infinite dilution activity coefficients (γ∞) are 

poor. 

 
2.3.7  LCVM 

Boukouvalas et al. (1994) proposed an interesting model that made use of both the original gE 

mixing rule  proposed by Vidal (1978) and that proposed by Michelsen (1990) (MHV1). The α-

term produced by both models is linked via a linear function, and for this reason the model of 

Boukouvalas et al. (1994) is called the linear combination of Vidal and Michelsen (LCVM) 

mixing rule. The LCVM model makes use of a modified and translated Peng-Robinson EOS and 
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the original UNIFAC gE model, however any EOS and gE model may be used in this mixing rule.  

The development of this model was driven by the failure of the PSRK model when predicting 

VLE of mixtures that contain components that differ greatly in size (highly asymmetric systems). 

As a result the LCVM model has been found to provide satisfactory results for systems of 

dissimilar component size and systems that contain non-polar and polar components at low and 

high pressure. 

The formulation of the LCVM mixing rule was based on two fundamental observations: 

1)   Both the Vidal and MHV1 mixing rules may be used at any pressure, irrespective of the 

reference pressure used in their development (infinite pressure for Vidal, zero pressure 

for MHV1). 

2)   The mathematical expression representing both models are very similar (see Equations 

(2.23) and (2.47)), the only differences being the numerical value represented by Λ and 

the presence of Σzi(bm/bi), a Florry-Huggins-type term in the MHV1 mixing rule.  

The reason for combining the two methods is due to the fact that in highly asymmetric systems 

the Vidal model has been found to under-predict bubble point pressures while the MHV1 model 

has been found to over-predict bubble point pressures which may be seen clearly in FIGURE 3 

below. If the two methods were combined in such a way that the over-prediction of the MHV1 

model was compensated for by the under-prediction of the Vidal model, accurate results could be 

obtained overall. It was therefore proposed to have a linear combination of α calculated from the 

Vidal model (symbolized by αV) and α calculated from the MHV1 model (symbolized by αMHV), 

in order to calculate the true αm. The proposed combination was: 

 (1 )m V MHVα λα λ α= + −  (2.65) 

where λ is a constant that determines the relative contributions to αm by αV and αMHV. When λ=0 

αm is simply αMHV and when λ=1 αm is simply αV. The LCVM mixing rule may also be 

represented as follows by substituting the α-form of the Vidal and MHV1 mixing rules into 

Equation (2.65): 

 
1 1

1 1
ln

E nc nc
m

m i i i
i iV MHV MHV i

g b
z z

RT b
γλ λ λα α

= =

     − −= + + +     Λ Λ Λ     
∑ ∑  (2.66) 
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where ΛV and ΛMHV are the Λ values of the Vidal and MHV1 mixing rules respectively. ΛV 

remains unchanged from the originally proposed value of -0.623 for the Peng-Robinson EOS. On 

the other hand though, Boukouvalas et al. decided to fit the linear approximation of the q-

function found in the derivation of the MHV1 mixing rule for the Peng-Robinson EOS over a 

wider interval of α, increasing the interval from (10, 13) to (6, 20). This causes a change in the 

slope of the straight line approximation (and hence the ΛMHV parameter) from -0.53 to -0.52. 

In order to determine the value of λ (i.e. establish to what degree αMHV and αV contribute to αm), 

results for the bubble point pressure of many ethane/n-alkane systems were calculated using 

values of λ ranging from 0 to 1. Systems containing ethane (small) and large alkanes were 

investigated as the aim of the LCVM method was to overcome the problem associated with 

representation of systems containing components that differ greatly in size. The average absolute 

error for each λ was then established by comparison with experimental data. The result of this 

analysis by Boukouvalas et al. may be seen in FIGURE 2 below. 

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
A
E
 (%
) i
n
 B
u
bb
le
 P
re
ss
ur
e 

?

C2/nC5 (377oK)

 

FIGURE 2 Average absolute % error (AAE) in predicted bubble point pressure for ethane/n-alkane systems as a 
function of the λ value (taken form Boukouvalas et al. (1994)) 

From the results it is obvious that in systems containing components of similar size, such as 

C2/nC5, MHV1 (λ=0) provides the best results but the results provided by Vidal (λ=1) are still 
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fairly good with an average absolute error (AAE) well below 10%. However, as the size 

difference between components begins to increase it becomes evident that there exists a value of 

λ for which the AAE can be minimized as the Vidal and MHV1 models begin to fail severely. 

For example if one investigates just the C2/nC28 curve of FIGURE 2, the Vidal model produces 

results with an AAE of around 70% and the MHV1 model yields results with an AAE in excess 

of 80%, however the correct combination of the two models allows predictions with an AAE in 

the region of 10%.  

Boukouvalas et al. (1994) suggests an optimum value (or reasonable compromise) for λ of 0.36 

when using UNIFAC which was found by investigating different binary systems (including 

systems of similar and greatly different component size) at  high and low pressure, using varying 

values of λ and focusing specifically on acceptable prediction of bubble point pressures and 

vapour phase compositions. The result of using λ = 0.36 for the most asymmetrical system tested, 

the ethane/nC28 system, may be seen in FIGURE 3. In comparison to the Vidal and MHV1 

models, the results of the LCVM model are seen to be much more accurate which confirms the 

reliability of this model for predictions of asymmetric systems.  A similar investigation revealed 

that if modified UNIFAC is used, the value of λ falls in the range from 0.65 to 0.75. 
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FIGURE 3 Prediction of the bubble point pressure for the system ethane / nC28 at 373 K (taken from Boukouvalas et 
al. (1994)) 
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Voutsas et al. (1996) provides an extensive comparison of the 4 models: MHV2, PSRK, Wong-

Sandler and LCVM, investigating the prediction of VLE in asymmetric systems by these models. 

It was concluded that LCVM was the only model of the four to provide satisfactory results. The 

same paper also states that the LCVM model has been successfully used to predict VLE in a 

range of systems of varying complexity. 

2.3.8 VTPR 

It has long been known that cubic equations of state lack the required accuracy when it comes to 

representation of saturated liquid densities. Ahlers and Gmehling (2001) identified this and 

realized that by starting from an improved CEOS (one that was better equipped to calculate 

saturated liquid densities) an improved group contribution EOS could be developed. It was with 

this in mind that Ahlers and Gmehling began development of a group contribution EOS that 

would improve the problems associated with the already highly regarded and successful PSRK 

model. Over the next 3 years, Ahlers et al. (Ahlers and Gmehling (2002a), Ahlers and Gmehling 

(2002b), Wang et al. (2003), Ahlers et al. (2004)) developed this concept further in a 5-part 

series and came up with the already successful Volume Translated Peng-Robinson (VTPR) 

group contribution EOS capable of completely replacing PSRK. 

As stated already, Ahlers and Gmehling (2001) realized that improvements could be made to 

existing gE mixing rules by simply using a better EOS. The concept of applying a volume 

translation to an existing EOS, proposed by Peneloux and Freze (1982), was therefore utilized in 

conjunction with the Peng-Robinson EOS as follows: 

 
( )( ) ( )

RT a
P

v c b v c v c b b v c b
= −

+ − + + + + + −
 (2.67) 

where c is the translation parameter and effectively shifts or translates each v term in the EOS. 

The volume translation has no effect on VLE calculations and simply provides significant 

improvements in the description of saturated liquid densities.  
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The pure component c parameter can be determined by calculating the difference in experimental 

and calculated densities at a reduced temperature Tr = 0.7: 

 exp calcc v v= −  (2.68) 

where the subscripts exp and calc represent molar volumes v obtained from experiment and 

calculated from the EOS respectively. Ahlers and Gmehling (2001) found that, should no 

experimental data for liquid densities be available, c may also be calculated directly from critical 

data as follows: 

 ( )0.252 1.5448 0.4024c
c

c

RT
c Z

P
= −  (2.69) 

Equation (2.69) was found by a fitting procedure (explained by Ahlers and Gmehling (2001)) 

which involved investigating liquid densities of 44 pure components of different families 

(alkanes, aromatics, ketones, alcohols and refrigerants). The results for predictions of liquid 

densities by the VTPR EOS were compared to that of the Peng-Robinson and Soave-Redlich-

Kwong EOS and it was found to be by far the most accurate model. Over a temperature range 0.3 

< Tr < 1 the VTPR EOS (using Equation (2.69)) was found to have the lowest deviation in liquid 

density from experimental results with a value of 4.1%. The Soave-Redlich-Kwong and Peng-

Robinson equations of state deviated from experimental results by 13.3% and 6.9% respectively. 

Near the critical temperature the change in v with change in T (i.e. the slope dv/dT) is extreme 

and as a result the volume translation concept fails, therefore VTPR may not be used for the 

entire temperature range. Ahlers and Gmehling (2002a) says that it is not recommended to use 

the VTPR EOS to calculate pure component and mixture liquid densities at reduced temperatures 

greater than 0.8. Ahlers and Gmehling (2001) also identified this problem and as a result 

investigated the use of a temperature dependent translation term c(T) as they began exploring the 

use of volume translation for an improved group contribution EOS. Through this investigation an 

alternate method to the VTPR EOS was developed which used the temperature dependent 

volume translation and was called the T-VTPR EOS. The T-VTPR method was found to provide 

accurate predictions of liquid densities right up to the critical point (Tr = 1) however 

representations of VLE at high pressure proved to be highly unreasonable. As a result it was 

decided to base future developments on the VTPR EOS and not the T-VTPR EOS. 
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Obviously the improved description of pure component liquid densities also leads to better 

representation of mixtures, therefore eliminating one of the major problems found when using 

the PSRK model. In trying to provide an improved gE mixing rule and replace PSRK, Ahlers and 

Gmehling (2002a) identified 3 other areas in which the PSRK shows weaknesses: 

1.  The Mathias-Copeman α function, used in the calculation of pure component a 

parameters, is thermodynamically incorrect at higher reduced temperatures 

2.  The prediction of asymmetric systems often delivers unsatisfactory results. 

3.  Predictions of excess enthalpies hE and infinite dilution activity coefficients γ∞ are poor. 

In order to ensure that the VTPR model was an improvement over the PSRK model, a number of 

alterations were made to ideas used in PSRK. 

Firstly, the Mathias-Copeman α function (Mathias and Copeman (1983)) was replaced with the 

Twu α function (Twu et al. (1991), Twu et al. (1995)) for the calculation of pure component 

EOS a values. The Twu α function provides much more reliable reproduction of pure component 

vapour pressures and has been shown to operate reasonably at elevated temperatures (i.e. shows 

reasonable temperature extrapolations). At very high temperatures the α function should 

approach zero and it is under these conditions that the Mathias-Copeman α function fails.  

In order to improve predictions of highly asymmetric systems (weakness 2 above), Ahlers et al. 

identified that development of the VTPR model required the introduction of improved mixing 

rules for calculation of the am and bm parameters. Improvements to the mixing rule for am 

revolved around the fact that in the PSRK model there are two parameters which represent a 

similar property but have different values. These parameters are the co-volume of the pure 

components bi (used in the EOS) and the relative van der Waals volume r i (used in the UNIFAC 

model). As the degree of asymmetry increases these values are found to become increasingly 

different (see FIGURE 4 below).  
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FIGURE 4 Change in the quotients ralkane/rethane and balkane/bethane in dependence of the degree of asymmetry of the 
system: (o) parameter b (PR EOS); (*) relative van der Waals volume parameter r (taken from Ahlers and Gmehling 

(2002a)) 

Ratios relative to ethane are used in FIGURE 4, as the main focus of this study was behavior at 

different levels of asymmetry. Based on improvements made to the PSRK model by Li et al. 

(1998), which introduced an empirical correction for more reliable predictions of asymmetric 

systems, it was decided that the relative van der Waals volume r i should be replaced by the co-

volume bi  in the improved mixing rule model. Using this alteration, Ahlers and Gmehling 

(2002a) proved that the PSRK mixing rule may be greatly simplified and improved for 

asymmetric system predictions. The following argument was presented to do so: 

i. gE calculated using the UNIFAC model consist of two parts, the combinatorial and the 

residual part: 

 E E E
comb resg g gγ = +  (2.70) 

The combinatorial part is calculated as follows using pure component relative van der 

Waals volumes r i and surface areas qi: 

 
1 1

ln 5 ln
nc nc

E
comb i i i i i

i i

g RT z V z q F
= =

 = + 
 
∑ ∑  (2.71) 
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where Vi and Fi are the volume to mole fraction ratio and the surface area to mole fraction 

ratio respectively, calculated by: 
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∑

∑

 (2.72) 

ii.  The Florry-Huggins term Σziln(bm/bi) in the PSRK mixing rule (Equation (2.62)) can be 

rearranged into the following form: 

 '
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i i i

i ii

b
z z V

b= =

 
= − 
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where: 
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1
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i nc

j j
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b
V

z b
=

=
∑

 (2.74) 

iii.  Now applying the fact that r i is replaced with bi, one can see that the altered form of the 

Florry-Huggins term (Equation (2.73)) is the negative equivalent of the first summation 

term in the combinatorial part of the UNIFAC model (Equation (2.71)) and therefore the 

two terms can be canceled in the PSRK mixing rule. In addition, the second summation in 

the combinatorial part provides only a small contribution (relative to the first summation 

term) and is therefore regarded as negligible. 

As a result of the above explanation, the gE term found in the PSRK mixing rule need only be 

represented by the residual part of the UNIFAC model (which also means that the relative van 

der Waals volume parameter r i is no longer required in the mixing rule) as the Florry-Huggins 

term disappears.  
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The VTPR mixing rule for am is therefore a simplified version of PSRK given by: 

 
1 0.53087

Enc
i res

m m i
i i

a g
a b z

b=

 
= − 

 
∑  (2.75) 

E
resg is calculated in the same way as in the UNIFAC model. 

The constant Λ found in MHV1 (Equation (2.47)) is calculated from a function specific to the 

EOS used and depends on the reference state of the mixing rule (which affects the reduced liquid 

phase volume u). For the Peng-Robinson EOS Λ is calculated from: 

 
( )
( )
1 21

ln
2 2 1 2

u

u

 + −
 Λ =
 + +
 

 (2.76) 

The reference state of the VTPR method is atmospheric pressure (same as PSRK) and under 

these conditions u was determined for 75 compounds in a similar way to that described for PSRK 

above, but using the Peng-Robinson EOS instead of the Soave-Redlich-Kwong EOS. u was 

assumed constant (as in PSRK – Equation (2.63)) and an average value of u = 1.22498 was 

calculated. Using this value of u the Λ parameter in VTPR is -0.53087. 

To further improve the performance of the VTPR model with respect to asymmetric systems, 

Ahlers and Gmehling (2002a) applied the work of Chen et al. (2002), which identified that in 

asymmetric systems the mixing rule for bm has a larger influence than previously anticipated and 

as a result proposed a quadratic mixing rule for the bm parameter: 

 
1 1

nc nc

m i j ij
i j

b z z b
= =

=∑∑  (2.77) 

whereby the following combining rule applies: 
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i j
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b b
b

 +
=   
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 (2.78) 

The above mixing rule replaces the linear version used in the PSRK model and has been found to 

significantly improve predictions of asymmetric systems. 
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The volume translation parameter c is extended for use in mixtures by a simple linear mixing 

rule: 

 
1

nc

m i i
i

c z c
=

=∑  (2.79) 

No indication is given in the literature covering the development of the VTPR model as to why 

this rule was selected, however it is very simple and results produced with the model indicate 

that the rule works adequately.  

The last area of weakness found in the PSRK model that Ahlers et al. aimed to eliminate in the 

new VTPR model was the prediction of excess enthalpies hE and infinite dilution activity 

coefficients γ∞. To do this they proposed to use temperature-dependent interaction parameters 

which would be simultaneously fitted to VLE, hE and γ∞ data. Ahlers and Gmehling (2002b) give 

detailed information as to how this fitting procedure was performed and provides insight into the 

objective function used. The reason for using temperature-dependent interaction parameters is to 

ensure reliable predictions for gas-alkane systems, which cover a large pressure and temperature 

range. As a result, the modified UNIFAC model is used in VTPR however the group interaction 

parameters used are specific to VTPR (i.e. existing modified UNIFAC parameters are not used). 
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3. THE VGTPR MODEL 

To date the PSRK model has become by far the most successful gE mixing rule developed and is 

found in most chemical engineering simulation software. Its success may be attributed mainly to 

its reliability, availability of parameters and range of applicability. However, as pointed out by 

Ahlers and Gmehling (2002a) and discussed in section 2.4.8 above, the PSRK model does 

exhibit some serious defects. In order to overcome these, a number of modifications were made 

to PSRK, resulting in the development of the VTPR model. The modifications made in 

development of the VTPR model provided an improved mixing rule over PSRK. The VTPR 

model allowed better: predictions of saturated liquid volumes (through a volume translated 

EOS), representation of asymmetric systems (by altering the mixing rules), pure component 

vapour pressure representation (with the use of the Twu α function) and calculations of hE and γ∞ 

(by refitting modified UNIFAC (Dortmund) parameters to a larger experimental data base).  

Although the VTPR mixing rule provides a major step forward in the field of mixture 

representation in equations of state, it does contain one major disadvantage which has resulted in 

PSRK remaining as the mixing rule of choice. VTPR uses the modified UNIFAC (Dortmund) 

method to calculate gE, however it is unable to utilize the large amount of existing modified 

UNIFAC (Dortmund) group-group interaction parameters. Cubic equations of state contain their 

own temperature dependence which in combination with the temperature dependence of the 

modified UNIFAC (Dortmund) parameters leads to erroneous results. To overcome this problem 

the modified UNIFAC (Dortmund) group-group interaction parameters have to be re-regressesed 

specifically for use in the VTPR model. In order to improve calculations of a number of 

properties when using the VTPR model, these parameters are regressed using an objective 

function that takes into account the differences in experimental and calculated values of the 

following: 

- VLE of normal and high boiling components 

- Gas solubilities 

- Infinite dilution activity coefficients 

- Excess enthalpies 

- Excess heat capacities 
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- Liquid-liquid equilibria 

- Solid-liquid equilibria 

Looking at the list above, it is understandable that this regression is very complicated and 

requires great care to obey all specific boundary conditions, which results in a very time 

consuming exercise. As a result the VTPR model offers only a very limited number of group-

group interaction parameters, which severely limits its availability for use in calculations. 

Although new parameters are being continuously added, it has taken approximately 8 years for 

the VTPR parameter matrix to reach its current state displayed in Figure 5 below. The PSRK 

model on the other hand has a very large parameter matrix (which may be seen in Figure 6) due 

to continuous extension over the past 18 years and as a result it will take many more years until 

the VTPR model reaches the maturity level of PSRK. Until this happens VTPR will continue to 

fall in the shadow of PSRK despite the obvious advantages it has over the PSRK model. 
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FIGURE 5 Current status of the modified UNIFAC parameters available for use in the VTPR model (taken from 
DDBSP - Gmehling et al. (2009)) 
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FIGURE 6 Current status of the UNIFAC parameters available for use in the PSRK model (taken from DDBSP - 
Gmehling et al. (2009)) 
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FIGURE 7 Current status of the modified UNIFAC (Dortmund) parameters available for direct use in the new 
VGTPR model (taken from DDBSP – Gmehling et al. (2009)) 

 

The idea investigated in this work then involves keeping the VTPR model, while however 

utilizing the vast amount of existing (and continuously advancing) modified UNIFAC 

(Dortmund) model parameters instead of undertaking the tedious and difficult task of re-

regressing them for use in VTPR. This will ensure that the new model will not only inherit the 

advantages of VTPR but will also increase its range of applicability up to and even beyond that 

of PSRK. In other words the limiting factor associated with the VTPR model will be eliminated. 
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The reason for this concept may be easily illustrated by investigating the differences in existing 

model parameters for VTPR and modified UNIFAC in Figure 5 and Figure 7 respectively. 

This idea was first proposed by Dr. Juergen Rarey (Rarey (2009)) and later investigated by 

Collinet et al. (2009). It was postulated that the modified UNIFAC (Dortmund) parameters could 

be used directly if the equality between the gE calculated from the EOS and from modified 

UNIFAC (Dortmund) (Equality (2.15)) was ensured, which removes the possibility of the 

combined double temperature dependence having any influence on the results. To do this the 

VTPR mixing rule for am was altered and a gE translation E
transg term was added as follows: 

 
1 0.53087

E Enc
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m m i
i i

a g g
a b z
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 += − 
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∑  (2.80) 

Now, in order to calculate gE from an EOS the following equation is required which is a different 

form of Equation (2.16): 
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g RT z γ
=

= ∑  (2.81) 

where γi is the activity coefficient of component i. γi is calculated as follows: 
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ˆ
iϕ is the fugacity coefficient of component i in the mixture calculated from the following 

equation: 
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where nj and ni are the number of moles of component i and j respectively. φi in Equation (2.82) 

is calculated using Equation (2.17).  The pressure term P in Equations (2.17) and (2.83) is 

represented by the EOS and therefore the end result depends heavily on the mixing rules used. 

Should Equation (2.80) be used without the gE translation term (i.e. using the VTPR mixing rule) 

and the modified UNIFAC (Dortmund) group-group interaction parameters be used directly, the 
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value of gE that results from Equation (2.81) is different from that calculated using modified 

UNIFAC (Dortmund) (and substituted into the mixing rule). So what the gE translation term does 

is ensure equality between these two calculations, however instead of just trying to match the 

two gE terms it was rather suggested to ensure equality between activity coefficients of each 

component: 

 , ,i EOS i γγ γ=  (2.84) 

The subscripts i,EOS and i,γ indicate activity coefficient of component i calculated from the EOS 

and from the gE (activity coefficient) model respectively. This was done due to the fact that there 

is a possibility that the two gE values calculated could be identical even when the individual 

component activity coefficients are not. If the activity coefficients for each component calculated 

by the two methods are identical, gE will always be identical. In essence the activity coefficients 

calculated using modified UNIFAC (Dortmund) are assumed correct and the values calculated 

from the EOS are matched by making iterative adjustments to the am parameter which is done by 

changing the gE translation term, which in effect is a correction term. 

The Twu α-function and the mixing rules for bm and cm remain the same as those used in the 

VTPR model. 

A downside of this approach is that gE in the EOS approach can only be calculated for subcritical 

components. It was therefore decided to calculate the equality not along the saturated vapour-

pressure curve but at a certain fixed reduced density (reference density) of the pure components 

and the mixture. The pressure difference between this state and the saturated state changes gE 

only slightly due to the low pressure dependence of gE in the liquid state. The model is now 

applicable at sub- and supercritical conditions and temperature dependent gE model parameters 

regressed previously can be used in the EOS at any temperature. This model therefore allows 

combination of the volume-translated Peng-Robinson EOS with the modified UNIFAC method 

(with temperature dependent group interaction parameters). 

This model was originally proposed and tested by Collinet et al. (2009) and was found to provide 

very accurate results. VGTPR was found to provide identical predictions to the modified 

UNIFAC model for vapour-liquid equilibria, excess enthalpies, activity coefficients at infinite 

dilution and solid-liquid equilibria. Using the reference volume, VGTPR was found to give very 
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similar results to the PSRK model at subcritical conditions, however under supercritical 

conditions VGTPR was found to give markedly better results than PSRK.  

The outlook of the VGTPR model is promising, however to date little research has been 

undertaken in the way of testing the model. Therefore, the purpose of this work is to extensively 

investigate the model using the large amount of experimental data already stored in the 

Dortmund Data Bank (DDB) with the idea of identifying any problems associated with the 

model and resolving these problems should they exist. Up until now, this work has not been 

initiated as a comprehensive review of the literature related to this topic has been undertaken. 
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4. FUTURE WORK 

To date, a comprehensive review of mixing rules for cubic equations of state has been completed 

so as to establish a better understanding of the topic as a whole and provide a firm foundation 

from which to develop the VGTPR model. A great deal more work is still required to complete 

the research. The following section aims to identify what tasks still need to be undertaken and 

the time frame estimated to perform each. 

Completion of literature review 

As stated already, a review of the mixing rules for cubic equations of state has been completed 

and has been presented in this report. A number of other topics still require review for the final 

thesis. The following topics have been identified as highly important and will be reviewed in the 

future: 

- Fundamental thermodynamic concepts used throughout this work. 

- Equations of state (the various types available) and the α functions available for use in the 

cubic equations of state. 

- gE models. 

This should take approximately 1 month to complete, however will be performed intermittently 

over the forthcoming months.  

Implementation of the VGTPR method 

At present the algorithm for the VGTPR method has yet to be written. This will be done using 

MATHCAD initially to test individual systems for investigation of results and identification of 

any problems associated with the algorithm. It is believed that this should not take too much 

time; however should there be major problems with the algorithm one could expect the time 

frame to increase. With all things running smoothly this could take around 2 weeks, however 

depending on the number of problems encountered this could take up to 1 month. This section of 

the project is obviously vital so the work required will not be rushed, and should more time be 

required for completion, it will be duly granted. 
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Testing the method 

Once the algorithm for the VGTPR method is finalized, the testing phase will begin. This will 

require calculating results for a wide variety of systems followed by comparison of the results 

with experimental data and predicted results obtained from other well established group 

contribution equations of state (eg. PSRK, LCVM and VTPR). The systems to be tested will 

range from simple (containing nonpolar components) to more complex systems displaying high 

levels of asymmetry and non-ideality (containing polar or associating components). The 

performance of the VGTPR model when representing supercritical systems will also be 

evaluated. Predictions of a number of different properties (eg. VLE, hE, γ∞ etc.) will be carried 

out during this testing phase, and compared to results from existing models and experimental 

data. Results from existing models will be generated with the use of the Dortmund Data Bank 

software package (DDBSP) (Gmehling et al. (2009)) which has the procedures for these models 

built-in. Any pure component data, group-group interaction parameters and experimental data 

that is required will be extracted from the Dortmund Data Bank (Gmehling et al. (2009)).  

The modified UNIFAC gE model is used in the VGTPR mixing rule and as a result the group-

group interaction parameters between gases and the structural groups of modified UNIFAC are 

not available. In order to counter this problem, these missing parameters will be regressed to 

predictions obtained from the PSRK model which may be utilized for a large variety of gas-

containing systems. This is obviously not ideal, however it will provide some ‘ball-park’ values 

for the missing parameters and allow predictions to be performed on these systems using 

VGTPR. These parameters can, at a later stage, be more accurately regressed to experimental 

data.  

Apart from just checking and comparing results, the stability of the model will also be tested 

which will involve investigations at varying conditions. The mathematical workings of the 

model will also be investigated so as to gain a better understanding of the model which is 

essential because in order to make improvements one must understand how it works.  

It is expected that this part of the project will require a large amount of time, especially when 

considering that it is during this phase that problems inherent in the model will be identified and 

hopefully rectified. A large amount of data will need to be generated, organized and examined 
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which in itself can be a very long procedure. Considering all of this it is expected that this phase 

should take in the region of 3 to 4 months. 

Thesis write-up 

The final task at hand will be to collect the results of all 3 previous phases and combine them 

into one coherent document.  A clear description of the VGTPR model and how it operates will 

be provided, while discussions related to the results of the testing phase will also be included. 

The tedious procedure of compiling a literature review should be finished by this phase; 

however the discussions will need to be presented in a clear and concise manner. It is estimated 

that this should take anywhere from 6 weeks to 2 months. 
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