Predict Pure - Thermophysical Properties from Molecular Structure

Overview

The program package Predict Pure was developed for the estimation of pure component properties using the most sophisticated methods. It incorporates a large number of different group contribution methods for a multitude of different properties. Using a special coding scheme for molecular structures, Predict Pure is able to take into account the chemical neighborhood of the individual groups thus implementing chemical know-how. Special features of some group contribution methods like topological indices and second order group corrections are automatically taken into account. Thus after entering the structure or retrieving it from the large data base included, the tedious task of property estimation can be performed with a single click. To ensure the correctness of the algorithm, the program has already been tested for years during the development of the well known UNIFAC and mod. UNIFAC methods.

It has also proven very helpful for years during the compilation of the Dortmund Data Bank (DDB) pure component data bank. Thousands of data points were automatically estimated and compared to experimental data from literature thus eliminating errors in data input and/or the estimation routines. Structures can be stored in 3D and rotated on the screen. To find components with a similar structural element, a powerful substructure search has been implemented. The whole package utilizes a user-friendly Windows graphical user interface. Results can be copied to the clipboard or automatically sent to Microsoft Excel™ for further processing. Whether you are dealing with process simulation, risk assessment, environmental protection or combinatorial chemistry, this is the package of choice for automatic property estimation.

Major Features

  1. Easy graphical input of molecular structures. New structures can be stored in the integrated data base or on file.
  2. 3D structures can be moved, scaled and rotated on screen
  3. Structures of commonly used chemicals already included (professional version)
  4. Basic data from the Dortmund Data Bank (DDB) (critical data, liquid density, 
    dipole moment) already included for a large number of components (professional version)
  5. Fast automatic property estimation using a large number of well known group contribution 
    methods
  6. Quality estimation expert system for normal boiling point and critical data estimation.
  7. Interactive Interface to MOPAC, input file generation for Gaussian, .... for the calculation of Sigma-Profiles for COSMO-RS
  8. Generate data tables by calculating properties over a given range - e. g. ideal gas heat capacities as f(T)
  9. Automatic fragmentation of molecules into structural groups for more than 60 group contribution methods incl. UNIFAC, mod. UNIFAC, ASOG, ...
  10. Automatic second order corrections, aromatic ring recognition, ...
  11. Automatic generation of topological indices (Balaban, delta-Platt, ...)
  12. User-definable set of preferred methods
  13. Substructure search for molecules containing user defined structural elements
  14. Re-usable user defined fragments
  15. Utilizes a user-friendly Windows graphical user interface
  16. Exports data to Microsoft Excel™

Download the manual of the Predict Pure software package

Models Included

Ambrose, Basarova/Svoboda, Benson, Bondi, Brock, Campbell/Thodos, Chein-Hsiun Tu, Chueh/Swanson, Cordes/ Rarey, Daubert, Devotta/Rao, Gani/Constantinou, Gomez-Nieto/Thodos, Han/Peng, Hearing/Domalski, High, Horvath, Hoshino, Hoshino/Nagahama, Joback, Klincewicz/Reid, Kolbasov, Kuehne, Lakshmi, Le Bas, Luria/Benson, Lydersen, Ma/Zhao, Mavrovouniotis, Mc Cann/Danner, Meissner, Miller, Missenard, Motoc/Balaban, Nannoolal/Rarey, Nagvekar/Daubert, Orrick/Erbar, Reichenberg, Riedel, Ruzicka/Domalski, Sastri/Mohanty/Rao, Sastri/Rao, Schroeder, Seaton, Shaw, Shebeco, Skubla, Somayajulu, Souders, Stein/ Brown, Tassios,Tatevskii, Thomas, Tsibanogiannis/ Kalospiros/Tassios, Tu/Liu, Tyn/Callus, van Velzen, ....

Estimation Models Quality

The quality of several models for estimating pure component properties has been investigated and a data base of mean errors for a wide variety of different component classes has been developed.

 

Scientific Papers

2009    Estimation of pure component properties. Part 4: Estimation of the saturated liquid viscosity of non-electrolyte organic compounds via group contributions and group interactions    Nannoolal Y., Rarey J., Ramjugernath D.    Journal    Fluid Phase Equilib., 281 (2), 97 119 (2009)
2008    Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions    Moller B., Rarey J., Ramjugernath D.    Journal    J.Mol.Liq., 143, 1, 52 63 (2008)
2008    Development of an Improved Group Contribution Method for the Prediction of Vapour Pressures of Organic Compounds, Bruce Moller, MSc. Thesis, 2008            MSc. Thesis, 2008
2008    Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions    Nannoolal Y., Rarey J., Ramjugernath D.    Journal    Fluid Phase Equilib., 269(1-2), 117-133 (2008)
2007    Estimation of pure component properties Part 2. Estimation of critical property data by group contribution    Nannoolal Y., Rarey J., Ramjugernath J.    Journal    Fluid Phase Equilib., 252, 1-2, 1 27 (2007)
2007    Development and Critical Evaluation of Group Contribution Methods for the Estimation of Critical Properties, Liquid Vapour Pressure and Liquid Viscosity of Organic Compounds, Yash Nannoolal, PhD Thesis, 2006            PhD Thesis, 2006
2004    Estimation of Pure Component Properties. Part 1. Estimation of the Normal Boiling Point of Non-Electrolyte Organic Compounds via Group Contributions and Group Interactions    Nannoolal Y., Rarey J., Ramjugernath D., Cordes W.    Journal    Fluid Phase Equilib., 226, 1, 45 63 (2004)
2003    Extension and Revision of the Group Contribution Method GCVOL for the Prediction of Pure Compound Liquid Densities    Ihmels E.C., Gmehling J.    Journal    Ind.Eng.Chem.Res., 42, 2, 408 412 (2003)
2003    An equation of state and compressed liquid and supercritical densities for sulfur dioxide    Ihmels C.E., Lemmon E.W., Gmehling J.    Journal    Fluid Phase Equilib., 207, 1-2, 111 130 (2003)
2002    A new method for the estimation of the normal boiling point of non-electrolyte organic compounds    Cordes W., Rarey J.    Journal    Fluid Phase Equilib., 201, 19, 409 433 (2002)
1999    Improvement of the Srk Equation of State for Representing Volumetric Properties Fluids Using Dortmund Data Bank    Wang L.-S., Gmehling J.    Journal    Chem.Eng.Sci., 54, 10, 3885 3892 (1999)
1996    Auswahl von Daten und Berechnungsmethoden fuer Reinstoffe und Gemische mit Hilfe eines heuristisch-numerischen Beratungssystems    Schembecker G., Simmrock K.H., Von Trotha T., Hradetzky G., Jung S., Lempe D.A., Gmehling J., Sass R., Westhaus U.    Journal    Chem.Ing.Tech., 68, 10, 1307 1311 (1996)
1995    Entwicklung von Modellen und Korrelationen zur Beschreibung von Reinstoffeigenschaften    Rarey J., Cordes W., Neumann S., Kraehenbuehl M.A., Gmehling J.    Journal    Chem.Ing.Tech., 67, 7, 907 912 (1995)
1994    Zwischenbericht zum Vorhaben "Aufbau einer Datenfaktenbank Reinstoffdaten" (Einzelplan 30, Kapitel 3004, Titel 68560, Haushaltsjahr 1993) (Foerderkennzeichen 08 G35 26 8)    Gmehling J.    Reports    Report, 141, 5, 1 7 (1994)

Documents on Predict Pure Methods developed in Durban, South Africa

2009    A New Group Contribution Method For The Estimation Of Thermal Conductivity For Non-Electrolyte Organic Compounds   
2009    A new group contribution method for the estimation of the surface tension of non-electrolyte organic compounds.